
Lambda Calculus
CS242

Lecture 4

Alex Aiken CS 242 Lecture 4

Review

• Reduction order
• Where should the next reduction be performed?
• Normal order: always choose the leftmost, outermost reduction

• Confluence
• If a computation terminates, the result is always the same regardless of the

evaluation order used

• Primitive recursion/array programming
• Use whole datatype operations for concise, loop-free programs

Alex Aiken CS 242 Lecture 4

History

• The lambda calculus was one of several computational systems
defined by mathematicians to probe the foundations of logic
• Others: combinator calculus, Turing machines

• Lambda calculus was introduced by Alonzo Church in the 1930’s
• Originally used to establish the existence of an undecidable problem

Alex Aiken CS 242 Lecture 4

A Language of Functions

• Like SKI calculus, lambda calculus focuses exclusively on functions
• Unlike SKI, lambda calculus has a notion of variable

e → x | λx.e | e e | (e)

In words, a lambda expression is a
 variable x,
 an abstraction (a function definition) λx.e, or
 an application (a function call) e1 e2

Alex Aiken CS 242 Lecture 4

Intuition

A function λx.e is a function definition just like

 def f(x) = e

Two differences
 λx.e is an anonymous function – it doesn’t have a name like “f”
 λx.e is a value – it can be a function argument or result

Alex Aiken CS 242 Lecture 4

Association

Rule: The body of a lambda abstraction extends as far right as possible.
 to the end of the expression or an unmatched right paren
λx.x λy.y = λx.(x λy.y)
λx.(λy.λz.y z) x is different from λx.λy.λz.y z x = λx.λy.λz.(y z x)

Rule: Application associates to the left
So f x y z = ((f x) y) z

Alex Aiken CS 242 Lecture 4

Computation Rule

(λx.e1) e2 → e1 [x := e2]

In words: In a function call, the formal parameter x is replaced by the
actual argument e2 in the body of the function e1.

This is called beta reduction.

Alex Aiken CS 242 Lecture 4

Examples

• The identity function I: λx.x

• The constant function K: λz.λy.z

(λx.x) (λz.λy.z) → x [x := λz.λy.z] = λz.λy.z

((λz.λy. z) (λx.x)) (λa.λb.a) → (λy. (λx.x)) (λa.λb.a) → λx.x

Alex Aiken CS 242 Lecture 4

Substitution

• Beta-reduction is the workhorse rule in the lambda calculus
• But it relies on substitution

x [x := e] = e
y [x := e] = y
(e1 e2) [x := e] = (e1 [x := e]) (e2 [x := e])
(λx.e1) [x := e] = λx.e1
(λy.e1) [x := e] = λy.(e1 [x := e]) if x ≠ y and y does not appear free in e

Alex Aiken CS 242 Lecture 4

Huh?

Why do we need this complicated rule?

(λy.e1) [x := e] = λy.(e1 [x := e]) if x ≠ y and y does not appear free in e

Consider

(λy.x) [x := y]

We don’t want the answer to be λy.y!

Alex Aiken CS 242 Lecture 4

Free Variables

The free variables of an expression are the variables not bound in an
abstraction.

FV(x) = { x }
FV(e1 e2) = FV(e1) ∪	FV(e2)
FV(λx.e) = FV(e) – { x }

Alex Aiken CS 242 Lecture 4

Substitution Revisited

x [x := e] = e
y [x := e] = y
(e1 e2) [x := e] = (e1 [x := e]) (e2 [x := e])
(λx.e1) [x := e] = λx.e1
(λy.e1) [x := e] = λy.(e1 [x := e]) if x ≠ y and y ∉	FV(e)

Alex Aiken CS 242 Lecture 4

But Substitution Should Always Work ...

• Intuitively, the bound variable name in an abstraction doesn’t matter
• λx.x is as good as λy.y

• We can rename bound variables to avoid collisions:

(λy.e1) [x := e] = λz.((e1[y := z]) [x := e]) if x ≠ y and z is a fresh name

(fresh means not occurring in e1 or e)

Alex Aiken CS 242 Lecture 4

Revisiting Our Substitution Example ...

(λy.x) [x := y] =

(λz.x) [x := y] =

(λz.y)

Alex Aiken CS 242 Lecture 4

Rules Again

• Renaming of bound variables is called alpha conversion

• Presentations of lambda calculus often include alpha conversion as a
separate rule

• A third rule, eta-conversion, is also part of the lambda calculus but is
not needed for computation:

e = λx.e x x ∉FV(e)

Alex Aiken CS 242 Lecture 4

Summary

Lambda calculus has three rules:

• Beta reduction (λx.e1) e2 → e1 [x := e2]
• Alpha conversion λx.e = λz.e [x := z] where z is fresh
• Eta conversion λx.e x = e x ∉FV(e)

Lambda calculus is often presented emphasizing only beta reduction, with
alpha conversion assumed to be done where needed to avoid capture of free
variables (“capture-avoiding renaming”). Eta conversion is used mostly in
proofs of logical properties, not in direct computation.

Alex Aiken CS 242 Lecture 4

Summary

• Lambda calculus is a language of higher-order functions

• Looks more familiar than SKI
• At least it has variables for function arguments!

• But there is a cost
• Defining how an expression is substituted for a variable is a little tricky
• Need to be careful not to inadvertently cause clashes of different variables

with the same name
• Requires renaming variables in general

Alex Aiken CS 242 Lecture 4

Example

(λx. x x) (λx. x x) → x x [x := λx. x x] = (λx. x x) (λx. x x)

• An example of a non-terminating expression
• Reduces to itself in one step, so can always be reduced

Alex Aiken CS 242 Lecture 4

λx

x x

λx

x x

λx

x x

λx

x x

the function

the function
body

the argument
an application

Recursion

As with SKI, producing true recursion is just slightly more involved:

Y = λf.(λx. f (x x)) (λx. f(x x))

Y g a = (λf.(λx. f (x x)) (λx. f(x x))) g a →
(λx. g (x x)) (λx. g(x x)) a →
g((λx. g(x x)) (λx. g(x x))) a →
g(g((λx. g(x x)) (λx. g(x x)))) a →
...

Alex Aiken CS 242 Lecture 4

Booleans

• As with SKI, represent true (false) by a function that given two arguments
picks the first (second)

• True = K = λx.λy.x
• False = λx.λy.y

• Example (λx.λy.y) w z → (λy.y) z → z

Alex Aiken CS 242 Lecture 4

Equations and Functions

• We could also start with equations for True and False
 True x y = x
 False x y = y

• Now we need to convert these to lambda terms
• Much like the abstraction algorithm we used for SKI

• But this procedure is easy in lambda calculus:
• Each variable on the left side becomes a lambda abstraction on the right side
• In the same order

• True = λx.λy.x
• False = λx.λy.y

Alex Aiken CS 242 Lecture 4

Boolean Operations

• Note that our definitions of True and False are combinators
• They have no free variables
• So we can just reuse the SKI encoding of the Boolean operations

• Let B be a Boolean
• not(B) = B False True
• B1 or B2 = B1 True B2
• B1 and B2 = B1 B2 False

Alex Aiken CS 242 Lecture 4

Pairs

pair x y z = z x y
fst x y = x
snd x y = y

pair = λx.λy.λz. z x y
fst = λx.λy.x
snd = λx.λy.y

pair True False first =
(λx.λy.λz. z x y) (λx.λy.x) (λx.λy.y) (λx.λy.x)
(λy.λz. z (λx.λy.x) y) (λx.λy.y) (λx.λy.x)
(λz. z (λx.λy.x) (λx.λy.y)) (λx.λy.x)
(λx.λy.x) (λx.λy.x) (λx.λy.y)
(λy.λx.λy.x) (λx.λy.y)
λx.λy.x =
True

Alex Aiken CS 242 Lecture 4

Natural Numbers

• n applies its first argument n times to its second argument

n f x = fn(x)

0 f x = x so 0 = λf.λx.x

succ n f x = f (n f x) succ = λn.λf.λx. f (n f x)

Alex Aiken CS 242 Lecture 4

Factorial

one = succ 0
add = λm.λn. m succ n
mul = λm.λn. m (add n) 0

pair = λa.λb.λf. f a b
fst = λx.λy.x
snd = λx.λy.y

p = λp. pair (mul (p fst) (p snd)) (succ (p snd))
! = λn.(n p (pair one one) fst)

Alex Aiken CS 242 Lecture 4

And The Rest: Some Lambda Calculus Topics

• The lambda calculus is extremely well-studied
• More studied than combinator systems

• We’ll touch on a few highlights:
• Algebraic data types
• General vs. primitive recursion
• Confluence
• Call-by-name vs. call-by-value
• Implementing lambda calculus using SKI

Alex Aiken CS 242 Lecture 4

Algebraic Data Types
• An algebraic data type is a data type that is a union of multiple cases

• Each case is a function called a constructor with a fixed number of arguments
• Algebraic data types can be recursively defined

• Schematically:
Type T=
 constructor1 Type11 Type12 … Type1n |
 constructor2 Type21 Type22 … Type2m |
 … more constructors …
Comments:
 The type arguments can be Bool, Int, Char, T itself or other ADTs
 The data type is “algebraic” because the constructor simply packages up the arguments
 The constructor functions as a “tag” naming which case of the ADT is being used
 A corresponding deconstructor recovers the constructor arguments for computing on the ADT

Alex Aiken CS 242 Lecture 4

Natural Numbers, Reprise

• The natural numbers are an example of an algebraic data type

Type Nat = succ Nat |
 0

• Two constructors
• succ of arity 1
• 0 of arity 0 (a constant with no arguments)

Alex Aiken CS 242 Lecture 4

Lists of Natural Numbers

Type List = nil |
 cons Nat List

• Two constructors
• nil of arity 0 (a constant with no arguments)
• cons of arity 2

Alex Aiken CS 242 Lecture 4

Binary Trees of Natural Numbers

Type Tree = leaf Nat |
 branch Tree Tree

• Two constructors
• leaf of arity 1
• branch of arity 2

Alex Aiken CS 242 Lecture 4

Encoding Algebraic Types in Lambda Calculus

Consider an algebraic data type T with n constructors
Let the ith constructor Ci have k arguments

The constructor and destructor for Ci can be implemented by one term:

λa1. λa2. … λak. λf1. λf2. … λfn. fi a1 a2 … ak

Alex Aiken CS 242 Lecture 4

The first k arguments are the
constructor part: We take k
arguments to build an element of T. An element of the ith constructor applies the

ith function to the constructor’s k arguments.

 Not shown: Arguments of type T are
recursively passed the n functions (see
examples)

The rest is an element of the ADT. Every element of type T
takes one function for each constructor of T.

A Simple Example: Pairs of Natural Numbers

Type Pair = P Nat Nat

Implementation:

λa.λb.λf. f a b

• Two arguments to build an element of constructor P
• Only one constructor, so the destructor only takes one function,

which it applies to the two arguments

Alex Aiken CS 242 Lecture 4

Natural Numbers, Reprise

Type Nat = succ Nat |
 0

0 = λf.λx.x

• 0 has no arguments – the “constructor” is a constant value
• Nat has two constructors, so the destructor always takes two

functions, f for the succ case and x for the 0 case. Since 0 has no
arguments we just return x

Alex Aiken CS 242 Lecture 4

Natural Numbers, Reprise

Type Nat = succ Nat |
 0

succ = λn.λf.λx. f (n f x)

• succ has one argument n
• The destructor takes two functions, f for succ and x for 0
• Since natural numbers are recursively defined (n is of type Nat), we

apply f to the result of recursively computing n f x

Alex Aiken CS 242 Lecture 4

Lists of Natural Numbers

Type List = nil |
 cons Nat List

cons = λh.λt.λx.λf. f h (t x f)
nil = λx.λf.x

Alex Aiken CS 242 Lecture 4

Summing a List of Natural Numbers

natural numbers
0 = λf.λx.x
succ = λn.λf.λx. f (n f x)

lists
nil = λx.λf.x
cons = λh.λt.λx.λf. f h (t x f)

1 = succ 0
add = λm.λn. m succ n
sum = λl.l 0 add
test = sum (cons 1 (cons 0 (cons 0 nil)))

Alex Aiken CS 242 Lecture 4

Intuition: How Does Recursion on ADTs Work?
sum = λl.l 0 add
test = sum (cons 1 (cons 0 (cons 0 nil)))
So test = (λl.l 0 add) (cons 1 (cons 0 (cons 0 nil)))

Intuition: Replace the constructors with corresponding functions and evaluate the result!

Alex Aiken CS 242 Lecture 4

cons

cons

cons

1

0

0 nil

add

add

add

1

0

0 0

1

λl.l 0 add

Primitive Recursion
• Primitive recursion is the difference between

• for I = 1 to 10 do …
• while (predicate(x)) do … something that modifies x ….

• In the first case the number of iterations is fixed when the loop starts
• Termination is guaranteed!

• Many data structures lend themselves naturally to primitive recursion
• Do something with every element of an array
• Traverse a list
• Iterate from 1 to n or n to 1
• This pattern is captured in a general way in our definition of algebraic data types

• In general recursion, the decision of whether to loop depends on data computed within the loop
• Sometimes general recursion is necessary – not everything can be written using primitive recursion
• But general recursion is more complex – you need a separate termination argument to understand why your loop will

eventually stop

Alex Aiken CS 242 Lecture 4

Confluence

• The lambda calculus is confluent
• The Church-Rosser theorem

• If e0 →* e1 and e0 →* e2, then there is an e3 s.t. e1 →* e3 and e2 →* e3
• Where we consider terms equivalent up to alpha conversion

• The proof is similar to the SKI proof
• But not as short …

Alex Aiken CS 242 Lecture 4

Reduction Order

Given a redex (λx.e) e’ should we:
• Evaluate e’ before performing the beta reduction? call-by-value
• Perform the beta reduction first? call-by-name

• Normal order (or lazy evaluation, or call-by-name) is the same as in SKI
• Always reduce the leftmost, outermost redex

• In call-by-value (or eager evaluation), we first recursively evaluate the
argument before reducing the function application
• The strategy used in C, C++, python, Java – probably every language you have used

Alex Aiken CS 242 Lecture 4

Does The Reduction Order Matter?

• Answer 1: It mostly doesn’t matter, because of confluence

• Answer 2: For efficiency, call-by-value is better
• Evaluate arguments one time

• Answer 3: For termination, call-by-name is better
• Call-by-name is guaranteed to terminate, if termination is possible
• Call-by-value may fail to terminate even if call-by-name terminates
• Does not contradict confluence, which says there is some reduction sequence to

reach a common term, not that a particular reduction strategy will reach it
• Recall that primitive recursion trivially guarantees termination

Alex Aiken CS 242 Lecture 4

Implementation

• There are many ways to implement lambda calculus
• One method is to translate lambda terms to SKI combinators

• Recall the abstraction algorithm: A(E,x) x = E

• Observe that λx.e = A(E,x)
• And A(E,x) is an SKI expression if e contains no lambda abstractions

• Consider a lambda expression e
• Repeat until there are no lambda abstractions remaining

• Replace an innermost lambda expression λx.e’ in e by A(e’,x)

Alex Aiken CS 242 Lecture 4

Equivalences

• The following are all equivalent in computational power
• SKI calculus
• Lambda calculus
• Turing machines

• Next time we will talk about typed lambda calculus, which is strictly
less powerful.

Alex Aiken CS 242 Lecture 4

