Lambda Calculus

CS242
Lecture 4

Review

- Reduction order
- Where should the next reduction be performed?
- Normal order: always choose the leftmost, outermost reduction
- Confluence
- If a computation terminates, the result is always the same regardless of the evaluation order used
- Primitive recursion/array programming
- Use whole datatype operations for concise, loop-free programs

History

- The lambda calculus was one of several computational systems defined by mathematicians to probe the foundations of logic
- Others: combinator calculus, Turing machines
- Lambda calculus was introduced by Alonzo Church in the 1930's
- Originally used to establish the existence of an undecidable problem

A Language of Functions

- Like SKI calculus, lambda calculus focuses exclusively on functions
- Unlike SKI, lambda calculus has a notion of variable
$\mathrm{e} \rightarrow \mathrm{x}|\lambda \mathrm{x} . \mathrm{e}| \mathrm{ee\mid} \mid \mathrm{e})$

In words, a lambda expression is a variable x,
an abstraction (a function definition) λ x.e, or an application (a function call) $\mathrm{e}_{1} \mathrm{e}_{2}$

Intuition

A function λx.e is a function definition just like

$$
\operatorname{def} f(x)=e
$$

Two differences
$\lambda x . e$ is an anonymous function - it doesn't have a name like " f "
$\lambda x . e$ is a value -it can be a function argument or result

Association

Rule: The body of a lambda abstraction extends as far right as possible. to the end of the expression or an unmatched right paren
$\lambda x . x \lambda y . y=\lambda x .(x \lambda y . y)$
$\lambda x .(\lambda y . \lambda z . y z) x$ is different from $\lambda x . \lambda y$. $\lambda z . y z x=\lambda x . \lambda y . \lambda z .(y z x)$

Rule: Application associates to the left
So $f x y z=((f x) y) z$

Computation Rule

$$
\left(\lambda x . e_{1}\right) e_{2} \rightarrow e_{1}\left[x:=e_{2}\right]
$$

In words: In a function call, the formal parameter x is replaced by the actual argument e_{2} in the body of the function e_{1}.

This is called beta reduction.

Examples

- The identity function $I: \lambda x . x$
- The constant function $K: \lambda z . \lambda y . z$
$(\lambda x . x)(\lambda z . \lambda y . z) \rightarrow x[x:=\lambda z . \lambda y . z]=\lambda z . \lambda y . z$
$((\lambda z . \lambda y . z)(\lambda x . x))(\lambda a . \lambda b . a) \rightarrow(\lambda y .(\lambda x . x))(\lambda a . \lambda b . a) \rightarrow \lambda x . x$

Substitution

- Beta-reduction is the workhorse rule in the lambda calculus
- But it relies on substitution
$x[x:=e]=e$
$y[x:=e]=y$
$\left(e_{1} e_{2}\right)[x:=e]=\left(e_{1}[x:=e]\right)\left(e_{2}[x:=e]\right)$
($\lambda x . e_{1}$) $[x:=e]=\lambda x . e_{1}$
$\left(\lambda y . e_{1}\right)[x:=e]=\lambda y .\left(e_{1}[x:=e]\right)$ if $x \neq y$ and y does not appear free in e

Huh?

Why do we need this complicated rule?
$\left(\lambda y \cdot e_{1}\right)[x:=e]=\lambda y .\left(e_{1}[x:=e]\right)$ if $x \neq y$ and y does not appear free in e Consider
($\lambda \mathrm{y} \cdot \mathrm{x})[\mathrm{x}:=\mathrm{y}]$
We don't want the answer to be $\lambda y . y$!

Free Variables

The free variables of an expression are the variables not bound in an abstraction.
$\mathrm{FV}(\mathrm{x})=\{\mathrm{x}\}$
$F V\left(e_{1} e_{2}\right)=F V\left(e_{1}\right) \cup F V\left(e_{2}\right)$
$F V(\lambda x . e)=F V(e)-\{x\}$

Substitution Revisited

$$
\begin{aligned}
& x[x:=e]=e \\
& y[x:=e]=y \\
& \left(e_{1} e_{2}\right)[x:=e]=\left(e_{1}[x:=e]\right)\left(e_{2}[x:=e]\right) \\
& \left(\lambda x \cdot e_{1}\right)[x:=e]=\lambda x \cdot e_{1} \\
& \left(\lambda y \cdot e_{1}\right)[x:=e]=\lambda y \cdot\left(e_{1}[x:=e]\right) \text { if } x \neq y \text { and } y \notin F V(e)
\end{aligned}
$$

But Substitution Should Always Work ...

- Intuitively, the bound variable name in an abstraction doesn't matter
- $\lambda x . x$ is as good as $\lambda y . y$
- We can rename bound variables to avoid collisions:
$\left(\lambda y \cdot e_{1}\right)[x:=e]=\lambda z .\left(\left(e_{1}[y:=z]\right)[x:=e]\right)$ if $x \neq y$ and z is a fresh name
(fresh means not occurring in e_{1} or e)

Revisiting Our Substitution Example ...

($\lambda \mathrm{y} . \mathrm{x})[\mathrm{x}:=\mathrm{y}]=$
($\lambda z . x)[x:=y]=$
($\lambda z . y$)

Rules Again

- Renaming of bound variables is called alpha conversion
- Presentations of lambda calculus often include alpha conversion as a separate rule
- A third rule, eta-conversion, is also part of the lambda calculus but is not needed for computation:

$$
e=\lambda x . e x \quad x \notin F V(e)
$$

Summary

Lambda calculus has three rules:

- Beta reduction ($\left.\lambda x . \mathrm{e}_{1}\right) \mathrm{e}_{2} \rightarrow \mathrm{e}_{1}\left[\mathrm{x}:=\mathrm{e}_{2}\right]$
- Alpha conversion $\lambda x . e=\lambda z . e[x:=z] \quad$ where z is fresh
- Eta conversion $\lambda x . e x=e \quad x \notin \mathrm{FV}(\mathrm{e})$

Lambda calculus is often presented emphasizing only beta reduction, with alpha conversion assumed to be done where needed to avoid capture of free variables ("capture-avoiding renaming"). Eta conversion is used mostly in proofs of logical properties, not in direct computation.

Summary

- Lambda calculus is a language of higher-order functions
- Looks more familiar than SKI
- At least it has variables for function arguments!
- But there is a cost
- Defining how an expression is substituted for a variable is a little tricky
- Need to be careful not to inadvertently cause clashes of different variables with the same name
- Requires renaming variables in general

Example

$$
(\lambda x . x x)(\lambda x . x x) \rightarrow x x[x:=\lambda x . x x]=(\lambda x . x x)(\lambda x . x x)
$$

- An example of a non-terminating expression
- Reduces to itself in one step, so can always be reduced

Recursion

As with SKI, producing true recursion is just slightly more involved:

```
Y=\lambdaf.(\lambdax.f(xx))(\lambdax.f(x x))
Yga=(\lambdaf.(\lambdax.f(x ( ) ) (\lambdax.f(x x))) ga 
(\lambdax.g(x x)) (\lambdax.g(x x)) a }
g((\lambdax.g(x x)) (\lambdax.g(x x))) a }
g(g((\lambdax.g(x ) ) (\lambdax.g(xx)))) a }
```


Booleans

- As with SKI, represent true (false) by a function that given two arguments picks the first (second)
- True = K = $\lambda x . \lambda y . x$
- False $=\quad \lambda x . \lambda y . y$
- Example ($\lambda x . \lambda y . y) w z \rightarrow(\lambda y . y) z \rightarrow z$

Equations and Functions

- We could also start with equations for True and False

True $x y=x$
False $x y=y$

- Now we need to convert these to lambda terms
- Much like the abstraction algorithm we used for SKI
- But this procedure is easy in lambda calculus:
- Each variable on the left side becomes a lambda abstraction on the right side
- In the same order
- True $=\lambda x . \lambda y . x$
- False $=\lambda x . \lambda y . y$

Boolean Operations

- Note that our definitions of True and False are combinators
- They have no free variables
- So we can just reuse the SKI encoding of the Boolean operations
- Let B be a Boolean
- not(B) = B False True
- B1 or B2 = B1 True B2
- B1 and B2 = B1 B2 False

Pairs

pair x y $z=z x y$
fst $x y=x$
snd $x y=y$
pair $=\lambda x \cdot \lambda y . \lambda z . z x y$
$\mathrm{fst}=\lambda x . \lambda y . x$
snd $=\lambda x . \lambda y \cdot y$
pair True False first =
($\lambda x . \lambda y . \lambda z . z x y)(\lambda x . \lambda y . x)(\lambda x . \lambda y . y)(\lambda x . \lambda y . x)$
($\lambda y . \lambda z . z(\lambda x . \lambda y . x)$ y) ($\lambda x . \lambda y . y$) ($\lambda x . \lambda y . x)$
($\lambda z . z(\lambda x . \lambda y . x)(\lambda x . \lambda y . y))(\lambda x . \lambda y . x)$
($\lambda x . \lambda y . x)(\lambda x . \lambda y . x)(\lambda x . \lambda y . y)$
($\lambda y . \lambda x . \lambda y . x$) ($\lambda x . \lambda y . y$)
$\lambda x . \lambda y . x=$
True

Natural Numbers

- n applies its first argument n times to its second argument

$$
n f x=f^{n}(x)
$$

$$
0 f x=x \quad \text { so } 0=\lambda f . \lambda x \cdot x
$$

$$
\text { succ } n f x=f(n f x) \quad \text { succ }=\lambda n . \lambda f . \lambda x . f(n f x)
$$

Factorial

```
one = succ 0
add = \lambdam.\lambdan. m succ n
mul = \lambdam.\lambdan. m (add n) 0
pair = \lambdaa.\lambdab.\lambdaf. f a b
fst = \lambdax. \lambday.x
snd = \lambdax.\lambday.y
p = \lambdap. pair (mul (p fst) (p snd)) (succ (p snd))
! = \lambdan.(n p (pair one one) fst)
```


And The Rest: Some Lambda Calculus Topics

- The lambda calculus is extremely well-studied
- More studied than combinator systems
- We'll touch on a few highlights:
- Algebraic data types
- General vs. primitive recursion
- Confluence
- Call-by-name vs. call-by-value
- Implementing lambda calculus using SKI

Algebraic Data Types

- An algebraic data type is a data type that is a union of multiple cases
- Each case is a function called a constructor with a fixed number of arguments
- Algebraic data types can be recursively defined
- Schematically:

Type T=

```
constructor }\mp@subsup{1}{1}{}\mp@subsup{\mathrm{ Type }}{11}{}\mp@subsup{\mathrm{ Type }}{12}{2}\ldots\mp@subsup{\mathrm{ Type 1n |}}{1}{
constructor,}\mp@subsup{\mathrm{ Type 21 Type 22 ... Type 2m |}}{2}{
```

... more constructors ...

Comments:

The type arguments can be Bool, Int, Char, T itself or other ADTs
The data type is "algebraic" because the constructor simply packages up the arguments
The constructor functions as a "tag" naming which case of the ADT is being used
A corresponding deconstructor recovers the constructor arguments for computing on the ADT

Natural Numbers, Reprise

- The natural numbers are an example of an algebraic data type

Type Nat = succ Nat |

0

- Two constructors
- succ of arity 1
- 0 of arity 0 (a constant with no arguments)

Lists of Natural Numbers

Type List = nil | cons Nat List

- Two constructors
- nil of arity 0 (a constant with no arguments)
- cons of arity 2

Binary Trees of Natural Numbers

Type Tree = leaf Nat |
branch Tree Tree

- Two constructors
- leaf of arity 1
- branch of arity 2

Encoding Algebraic Types in Lambda Calculus

Consider an algebraic data type T with n constructors
Let the ith constructor C_{i} have k arguments

The constructor and destructor for C_{i} can be implemented by one term:


```
constructor part: We take k
arguments to build an element of T.
An element of the ith constructor applies the ith function to the constructor's \(k\) arguments.
The rest is an element of the ADT. Every element of type T takes one function for each constructor of \(T\).
Not shown: Arguments of type T are recursively passed the n functions (see

\section*{A Simple Example: Pairs of Natural Numbers}

\section*{Type Pair \(=\) P Nat Nat}

Implementation:

\section*{\(\lambda a . \lambda b . \lambda f . f a b\)}
- Two arguments to build an element of constructor \(P\)
- Only one constructor, so the destructor only takes one function, which it applies to the two arguments

\section*{Natural Numbers, Reprise}

\section*{Type Nat = succ Nat |}

0
\(0=\lambda f . \lambda x . x\)
- 0 has no arguments - the "constructor" is a constant value
- Nat has two constructors, so the destructor always takes two functions, \(f\) for the succ case and \(x\) for the 0 case. Since 0 has no arguments we just return \(x\)

\section*{Natural Numbers, Reprise}
```

Type Nat = succ Nat |
0
succ = \lambdan.\lambdaf.\lambdax.f(nfx)

```
- succ has one argument \(n\)
- The destructor takes two functions, f for succ and x for 0
- Since natural numbers are recursively defined ( n is of type Nat ), we apply \(f\) to the result of recursively computing \(n f x\)

\section*{Lists of Natural Numbers}

\author{
Type List = nil | \\ cons Nat List
}
```

cons = \lambdah.\lambdat.\lambdax.\lambdaf. f h (t x f)
nil = \lambdax. \lambdaf. .

```

\section*{Summing a List of Natural Numbers}
```


natural numbers

0 = \lambdaf. \lambdax.x
succ = \lambdan.\lambdaf.\lambdax.f(nfx)

lists

nil = \lambdax. }\lambda
cons = \lambdah. \lambdat.\lambdax. \lambdaf. f h (t x f)
1 = succ 0
add = \lambdam.\lambdan. m succ n
sum = \lambdal.l O add
test = sum (cons 1 (cons 0 (cons 0 nil)))

```

\section*{Intuition: How Does Recursion on ADTs Work?}
```

sum = \lambdal.I 0 add
test = sum (cons 1 (cons 0 (cons 0 nil)))
So test = (\lambdal.l 0 add) (cons 1 (cons 0 (cons 0 nil)))

```

Intuition: Replace the constructors with corresponding functions and evaluate the result!


\section*{Primitive Recursion}
- Primitive recursion is the difference between
- for I = 1 to 10 do ..
- while (predicate(x)) do ... something that modifies x ....
- In the first case the number of iterations is fixed when the loop starts
- Termination is guaranteed!
- Many data structures lend themselves naturally to primitive recursion
- Do something with every element of an array
- Traverse a list
- Iterate from 1 to \(n\) or \(n\) to 1
- This pattern is captured in a general way in our definition of algebraic data types
- In general recursion, the decision of whether to loop depends on data computed within the loop
- Sometimes general recursion is necessary - not everything can be written using primitive recursion
- But general recursion is more complex - you need a separate termination argument to understand why your loop will eventually stop

\section*{Confluence}
- The lambda calculus is confluent
- The Church-Rosser theorem
- If \(\mathrm{e}_{0} \rightarrow^{*} \mathrm{e}_{1}\) and \(\mathrm{e}_{0} \rightarrow^{*} \mathrm{e}_{2}\), then there is an \(\mathrm{e}_{3}\) s.t. \(\mathrm{e}_{1} \rightarrow^{*} \mathrm{e}_{3}\) and \(\mathrm{e}_{2} \rightarrow^{*} \mathrm{e}_{3}\)
- Where we consider terms equivalent up to alpha conversion
- The proof is similar to the SKI proof
- But not as short ...

\section*{Reduction Order}

Given a redex ( \(\lambda x . e\) ) e' should we:
- Evaluate e' before performing the beta reduction? call-by-value
- Perform the beta reduction first? call-by-name
- Normal order (or lazy evaluation, or call-by-name) is the same as in SKI
- Always reduce the leftmost, outermost redex
- In call-by-value (or eager evaluation), we first recursively evaluate the argument before reducing the function application
- The strategy used in C, C++, python, Java - probably every language you have used

\section*{Does The Reduction Order Matter?}
- Answer 1: It mostly doesn't matter, because of confluence
- Answer 2: For efficiency, call-by-value is better
- Evaluate arguments one time
- Answer 3: For termination, call-by-name is better
- Call-by-name is guaranteed to terminate, if termination is possible
- Call-by-value may fail to terminate even if call-by-name terminates
- Does not contradict confluence, which says there is some reduction sequence to reach a common term, not that a particular reduction strategy will reach it
- Recall that primitive recursion trivially guarantees termination

\section*{Implementation}
- There are many ways to implement lambda calculus
- One method is to translate lambda terms to SKI combinators
- Recall the abstraction algorithm: \(A(E, x) x=E\)
- Observe that \(\lambda x . e=A(E, x)\)
- And \(A(E, x)\) is an SKI expression if e contains no lambda abstractions
- Consider a lambda expression e
- Repeat until there are no lambda abstractions remaining
- Replace an innermost lambda expression \(\lambda x . e^{\prime}\) in e by \(A\left(e^{\prime}, x\right)\)

\section*{Equivalences}
- The following are all equivalent in computational power
- SKI calculus
- Lambda calculus
- Turing machines
- Next time we will talk about typed lambda calculus, which is strictly less powerful.```

