Combinators II

CS242 Lecture 3

Alex Aiken CS 242 Lecture 3

Review

• Function application written as space/juxtaposition

fx

• Programs as trees

SKI Calculus

 $K \times y \rightarrow x$ Constant functions

 $S x y z \rightarrow (x z) (y z)$

Generalized function application

Writing Combinators: A Systematic Approach

- Finding a combinator that implements a given function is not trivial
 - Some have nice intuitive definitions (e.g., Booleans)
 - Others are completely non-obvious (e.g., swap)
- There is a systematic way to write combinators
 - Start with a function equation using variables that specifies what we want swap x y = y x
 - An *abstraction algorithm* A(...) maps the right-hand side to a combinator
 - The key is to eliminate the variables by replacing them with uses of the combinators S, K, and I

Writing Combinators: A Systematic Approach

- Consider a function equation of one variable: f x = E
 - The equation can use combinators and variables
 - If we apply function f to argument x, the result is E
- We want a combinator A(E,x) that implements f
 - Therefore A(E,x) x = E
 - And A(E,x) doesn't use x
 - We say we *abstract* E with respect to x
- A(x,x) = I
- A(E,x) = K E if x does not appear in E
- A(E1 E2,x) = S A(E1,x) A(E2,x)
- Note A(...) is not a combinator
 - it is a (recursively defined) mapping from expressions with variables to combinators

Working Through Each Case ...

• A(x,x) = I

- Consider the equation f x = x
 - Requires A(x,x) x = x
 - And A(x,x) does not use x
- What combinator satisfies these two conditions? I!

Working Through Each Case ...

• A(E,x) = K E

- Consider the equation f x = E
 - Where E does not use x
 - Again requires A(E,x) x = E
 - And A(E,x) does not use x
- Note that K E does not use x
- Calculate: $K \to E$

Working Through Each Case ...

- A(E1 E2,x) = S A(E1,x) A(E2,x)
- Consider the equation f x = (E1 E2) x
 - Requires A(E1 E2,x) x = E1 E2
 - And A(E1 E2,x) does not use x
- Notice that S A(E1,x) A(E2,x) does not use x
- Calculate:

 $S A(E1,x) A(E2,x) x \rightarrow (A(E1,x) x) (A(E2,x) x) \rightarrow E1 (A(E2,x) x) \rightarrow E1 E2$

Improvements

- We can introduce helper combinators to reduce the size of abstracted expressions
- In S x y z, often z is only used in one of x or y
 - We can avoid copying z and just pass it to the one combinator that uses it
- Define
 - $c1 \times y = x (y = x (y = z) a \text{ version of } S \text{ where the first argument is constant (doesn't use z)}$
 - $c2 \times y = (x \times z) = (x \times z) = a$ version of S where the second argument is constant (doesn't use z)
- Add new cases for to the abstraction algorithm for applications that use c1 or c2 if possible

 $\begin{array}{l} \mathsf{A}(\mathsf{E1}\;\mathsf{E2},\mathsf{x})=\mathsf{c1}\;\mathsf{E1}\;\mathsf{A}(\mathsf{E2},\mathsf{x}) \ \text{if x does not appear in $\mathsf{E1}$} \\ \mathsf{A}(\mathsf{E1}\;\mathsf{E2},\mathsf{x})=\mathsf{c2}\;\mathsf{A}(\mathsf{E1},\mathsf{x})\;\mathsf{E2} \ \text{if x does not appear in $\mathsf{E2}$} \\ \mathsf{A}(\mathsf{E1}\;\mathsf{E2},\mathsf{x})=\mathsf{S}\;\mathsf{A}(\mathsf{E1},\mathsf{x})\;\mathsf{A}(\mathsf{E2},\mathsf{x}) \ \text{otherwise} \end{array}$

Natural Numbers and Factorial

Alex Aiken CS 242 Lecture 3

Natural Numbers

n applies its first argument n times to its second argument

 $n f x = f^n(x)$

0 f x = x so 0 = S Ksucc n f x = f (n f x) succ = S (S (K S) K)

succ n f x \rightarrow S (S (K S) K) n f x \rightarrow (S (K S) K f) (n f) x \rightarrow ((K S) f) (K f) (n f) x \rightarrow S (K f) (n f) x \rightarrow ((K f) x) ((n f) x) \rightarrow f ((n f) x) = f (n f x)

Some Useful Functions

one = succ 0 add x y = x succ y mul x y = x (add y) 0

```
Abstracting add and mul:
add = c2 (c1 c1 (c2 | succ)) |
mul = c2 (c1 c2 (c2 (c1 c1 |) (c1 add |))) 0
```


Shorthand: Write i for succⁱ(0)

10 (+ 2) 0 → 20 2 (* 2) 1 → 4

Notice how iteration/looping is built-in to the definition of the type.

An example of *primitive recursion*: The number of times we iterate is fixed by the element of the type itself.

Factorial

Standard recursive implementation: fac n = fac' 1 1 n fac' a i n = if i > n then a else fac' (a*i) i+1 n

Replace arguments a and i by a pair; use p.1 and p.2 to select first and second components respectively fac n = fac' (pair 1 1) n fac' p n = if p.2 > n then p.1 else fac' (pair (p.2 * p.1) (p.2 + 1)) n

Now define functions (switching from infix to prefix operations): m p = * (p second) (p first) = mul (p second) (p first) i2 p = + 1 (p second) = succ (p second) Abstract the functions into combinators: m = S (c1 mul (c2 | first)) (c2 | second); i2 = c1 succ (c2 | second)

Using the combinators: fac n = (fac' (pair 1 1) n) first fac' p n = if p.2 > n then p.1 else fac' (pair (m p) (i2 p))

Now use the recursion built into the natural numbers: fac n = (n fac' (pair one one)) first fac' p = pair (m p) (i2 p)

Abstracting into combinators: fac = (c2 (c2 I fac') (pair one one)) first fac' = S (c1 pair m) i2

From The Ground Up!

14 combinator definitions

Including

- Abstraction helpers
- Control structures
- Pairs
- Natural numbers
- Addition
- Multiplication

abstraction operators c1 = S(S(KK)(S(KS)(S(KK)I)))(K(S(S(KS)(S(KK)I))(KI)))c2 = S((c1 S(c1 K(c1 S(S(c1 c1 I)(K I)))))(K(c1 K I)))))# pairs first = Ksecond = SKpair = c2 (c1 c1 (c1 c2 (c1 (c2 |) |))) | # natural numbers 0 = S Ksucc = S(S(K S) K)one = succ 0add = c2 (c1 c1 (c2 | succ)) |;mul = c2 (c1 c2 (c2 (c1 c1 l) (c1 add l))) 0;# factorial and auxiliary functions m = S (c1 mul (c2 | first)) (c2 | second); i2 = c1 succ (c2 | second)fac' = S(c1 pair m) i2fac = (c2 (c2 I fac') (pair one one)) first

Reduction Order & Confluence

Alex Aiken CS 242 Lecture 3

Consider ...

$S | | x \rightarrow (| x) (| x) \rightarrow x (| x) \rightarrow x x$

Order of Evaluation

- In a large expression, many rewrite rules may apply
- Which one should we choose?

Order of Evaluation

- A process for choosing where to apply the rules is a *reduction strategy*
 - Each rule application is one reduction
- Most languages have a fixed reduction/evaluation order
 - So people forget that there might be more than one choice
 - But concurrent/parallel languages do provide multiple choices

Order of Evaluation

What is a good reduction strategy?

A Standard Choice

- Normal order
 - Traverse the leftmost spine of the expression tree from the root to the leaf combinator
 - If a rewrite rule applies, apply it, and repeat
 - Otherwise halt

Example

$S K x y \rightarrow (K y) (x y) \rightarrow y$

Alex Aiken CS 242 Lecture 3

Example

$S S x y \rightarrow (S y) (x y)$

No rule applies because S doesn't have enough arguments, so we stop here.

Example

$\mathsf{S} \mathsf{S} (\mathsf{K} \mathsf{x}) \mathsf{y} \to (\mathsf{S} \mathsf{y}) (\mathsf{K} \mathsf{x} \mathsf{y})$

And Another Example

Doing any reductions other than normal order may waste computation or loop forever (if we never rewrite the top-level function application).

Summary: Normal Order

- If any reduction order terminates, normal order will terminate
- Also called *lazy evaluation*
 - Only evaluate what is absolutely necessary to get an answer (if one exists)
 - In practice *call-by-value* is more popular
 - But more on that in a later lecture ...
- One of the arguments for using combinator languages is parallelism
 - Doing more than one reduction at a time
 - So not normal order ...
 - Could anything, besides non-termination, go wrong?

Confluence

- Could different choices of evaluation order change the (terminating) result of the program?
- The answer is no!
- A set of rewrite rules is *confluent* if for any expression E_0 , if $E_0 \rightarrow^* E_1$ and $E_0 \rightarrow^* E_2$, then there exists E_3 such that $E_1 \rightarrow^* E_3$ and $E_2 \rightarrow^* E_3$.

Proving Confluence

Definition:

If for all A, $A \rightarrow B \& A \rightarrow C$ implies there exists a D such that $B \rightarrow D$ and $C \rightarrow D$, then \rightarrow has the *one step diamond property*.

Thm: If \rightarrow has the one step diamond property, then \rightarrow is confluent.

Proof: Assume $A \rightarrow^* X \& A \rightarrow^* Y$. The proof is by induction on the length of the derivations.

Diagram

Confluence of SKI

- So to show that SKI is confluent, it suffices to show it has the one step diamond property
- Note: The one step diamond property is sufficient, but not necessary, to prove confluence. But it is a very common proof method for showing the confluence of rewrite systems.

Confluence of SKI: Case I x

Case K x y (2 of 2) y Κ Χ y' Χ -Κ Х

Case S x y z (1 of 3)

Case S x y z (2 of 3) Ζ S Х Ζ V Χ S Χ z y Ζ Χ z y' Ζ Alex Aiken CS 242 Lecture 3

Case S x y z (3 of 3)

A New Relation

- \rightarrow doesn't have the one step diamond property!
 - Because S copies its third argument
- But all is not lost!
 - If we can find another rewrite relation that is equivalent to → and has the one step diamond property, then that will show that → is confluent
- Define X >> Y if
 - $X \rightarrow Y$ via a rewrite at the root node
 - X = A B, Y = A' B' and A >> A' and B >> B'
- Easy to see that $A >>^* B$ iff $A \rightarrow^* B$
- Thm: >> has the one step diamond property.

First, What Does >> Do?

• Allows multiple rewrites as long as they are in *independent subtrees*

Alex Aiken CS 242 Lecture 3

What Does >> Not Do?

• Multiple rewrites must be in *independent subtrees*

Caselx

Case K x y (Interesting Case)

Case S x y z (Interesting Case Only ...)

- Combinator calculus has the advantage of having no variables
 - Compositional!
- All computations are local rewrite rules
 - Compute by pattern matching on the shape and contents of a tree
 - All operations are local and there are few cases
 - No need to worry about variables, scope, renaming ...
- Many proofs of properties are easier in combinator systems
 - E.g., confluence

- Combinator calculus has the disadvantage of having no variables
- Consider the S combinator again: $S \times y z \rightarrow (x z) (y z)$
- Note how z is ``passed'' to both x and y before the final application
- In a combinator calculus, this is the *only* way to pass information
 - In a language with variables, we would simply stash z in a variable and use it in x and y as needed
 - In a combinator-based language, z must be explicitly passed down to all parts of the subtree that need it

- Thus, what can be done in one step with a variable requires many steps (in general) in a pure combinator system
- Why does this matter?
 - SKI calculus is not a direct match to the way we build machines
 - Our machines have memory locations and can store things in them
 - Languages with variables take advantage of this fact

- Another advantage of combinators is working at the function level
 - Avoid reasoning about individual data accesses
- A natural fit for parallel and distributed bulk operations on data
 - Map a function over all elements of a dataset
 - Reduce a dataset to a single value using an associative operator
 - Transpose a matrix
 - Convolve an image
 - ...
- Note that in parallel/distributed operations, variables can be a problem ...

Summing UP: SKI and Beyond

Alex Aiken CS 242 Lecture 3

History

- SKI calculus was developed by Schoenfinkel in the 1920's
 - One of Hilbert's students
- Rediscovered by Haskell Curry in the 1930's
- The properties of SKI were known before any computers were built ...

Alex Aiken CS 242 Lecture 3

History

- First combinator-based programming language was APL
 - Designed by Ken Iverson in the 1960's
- Designed for expressing pipelines of operations on bulk data
 - Array programming
 - Basic data type is the multidimensional array
- Trivia: Special APL keyboards accommodated the many 1 character combinators
 - APL programs tend to be extremely concise
- Highly influential
 - On functional programming (several languages)
 - And array programming (Matlab, R, NumPy)

 $\{(+\neq \omega) \div \not\equiv \omega\}$

Summary

- Combinator calculi are among the simplest formal computation systems
- Also important in practice for array/collection programming
 - Where thinking in terms of bulk operations with built-in iteration is useful
- Not used as a model for sequential computation
 - Where we often want to take advantage of temporary storage/variables
- Combinators are also important in program transformations
 - Much easier to design combinator-based transformation systems
 - Some compilers (Haskell's GHC) even translate into an intermediate combinatorbased form for some optimizations

Next Time

- Another primitive calculus
- The lambda calculus
 - The basis of functional programming languages
 - And much of modern type systems