
Combinators II
CS242

Lecture 3

Alex Aiken CS 242 Lecture 3

Review

• Function application written as space/juxtaposition

f x

• Programs as trees

Alex Aiken CS 242 Lecture 3

xf

SKI Calculus

I x → x

K x y → x

S x y z → (x z) (y z)

Identity function

Constant functions

Generalized function application

Alex Aiken CS 242 Lecture 3

Writing Combinators: A Systematic Approach

• Finding a combinator that implements a given function is not trivial
• Some have nice intuitive definitions (e.g., Booleans)
• Others are completely non-obvious (e.g., swap)

• There is a systematic way to write combinators
• Start with a function equation using variables that specifies what we want

swap x y = y x
• An abstraction algorithm A(…) maps the right-hand side to a combinator
• The key is to eliminate the variables by replacing them with uses of the

combinators S, K, and I

Alex Aiken CS 242 Lecture 2

Writing Combinators: A Systematic Approach

• Consider a function equation of one variable: f x = E
• The equation can use combinators and variables
• If we apply function f to argument x, the result is E

• We want a combinator A(E,x) that implements f
• Therefore A(E,x) x = E
• And A(E,x) doesn’t use x
• We say we abstract E with respect to x

• A(x,x) = I
• A(E,x) = K E if x does not appear in E
• A(E1 E2,x) = S A(E1,x) A(E2,x)

• Note A(…) is not a combinator
• it is a (recursively defined) mapping from expressions with variables to combinators

Alex Aiken CS 242 Lecture 2

Working Through Each Case …

• A(x,x) = I

• Consider the equation f x = x
• Requires A(x,x) x = x
• And A(x,x) does not use x

• What combinator satisfies these two conditions? I!

Alex Aiken CS 242 Lecture 2

Working Through Each Case …

• A(E,x) = K E

• Consider the equation f x = E
• Where E does not use x
• Again requires A(E,x) x = E
• And A(E,x) does not use x

• Note that K E does not use x
• Calculate: K E x → E

Alex Aiken CS 242 Lecture 2

Working Through Each Case …

• A(E1 E2,x) = S A(E1,x) A(E2,x)
• Consider the equation f x = (E1 E2) x
• Requires A(E1 E2,x) x = E1 E2
• And A(E1 E2,x) does not use x

• Notice that S A(E1,x) A(E2,x) does not use x
• Calculate:

S A(E1,x) A(E2,x) x → (A(E1,x) x) (A(E2,x) x) → E1 (A(E2,x) x) → E1 E2

Alex Aiken CS 242 Lecture 2

Improvements

• We can introduce helper combinators to reduce the size of abstracted expressions

• In S x y z, often z is only used in one of x or y
• We can avoid copying z and just pass it to the one combinator that uses it

• Define
• c1 x y z = x (y z) – a version of S where the first argument is constant (doesn’t use z)
• c2 x y z = (x z) y – a version of S where the second argument is constant (doesn’t use z)

• Add new cases for to the abstraction algorithm for applications that use c1 or c2 if possible
 A(E1 E2,x) = c1 E1 A(E2,x) if x does not appear in E1
 A(E1 E2,x) = c2 A(E1,x) E2 if x does not appear in E2
 A(E1 E2,x) = S A(E1,x) A(E2,x) otherwise

Alex Aiken CS 242 Lecture 2

Natural Numbers and Factorial

Alex Aiken CS 242 Lecture 3

Natural Numbers

n applies its first argument n times to its second argument

n f x = fn(x)

0 f x = x so 0 = S K
succ n f x = f (n f x) succ = S (S (K S) K)

succ n f x → S (S (K S) K) n f x → (S (K S) K f) (n f) x → ((K S) f) (K f) (n f) x →
S (K f) (n f) x → ((K f) x) ((n f) x) → f ((n f) x) = f (n f x)

Alex Aiken CS 242 Lecture 2

Some Useful Functions

one = succ 0
add x y = x succ y
mul x y = x (add y) 0

Abstracting add and mul:
add = c2 (c1 c1 (c2 I succ)) I
mul = c2 (c1 c2 (c2 (c1 c1 I) (c1 add I))) 0

Alex Aiken CS 242 Lecture 2

Examples

Shorthand: Write i for succi(0)

10 (+ 2) 0 → 20
2 (* 2) 1 → 4

Notice how iteration/looping is built-in to the definition of the type.

An example of primitive recursion: The number of times we iterate is
fixed by the element of the type itself.

Alex Aiken CS 242 Lecture 2

Factorial
Standard recursive implementation:
fac n = fac’ 1 1 n
fac’ a i n = if i > n then a else fac’ (a*i) i+1 n

Replace arguments a and i by a pair;
use p.1 and p.2 to select first and second components respectively
fac n = fac’ (pair 1 1) n
fac’ p n = if p.2 > n then p.1 else fac’ (pair (p.2 * p.1) (p.2 + 1)) n

Now define functions (switching from infix to prefix operations):
m p = * (p second) (p first) = mul (p second) (p first)
i2 p = + 1 (p second) = succ (p second)

Abstract the functions into combinators:
m = S (c1 mul (c2 I first)) (c2 I second);
i2 = c1 succ (c2 I second)

Using the combinators:
fac n = (fac’ (pair 1 1) n) first
fac’ p n = if p.2 > n then p.1 else fac’ (pair (m p) (i2 p))

Now use the recursion built into the natural numbers:
fac n = (n fac’ (pair one one)) first
fac’ p = pair (m p) (i2 p)

Abstracting into combinators:
fac = (c2 (c2 I fac’) (pair one one)) first
fac’ = S (c1 pair m) i2

Alex Aiken CS 242 Lecture 2

From The Ground Up!

• 14 combinator definitions

• Including
• Abstraction helpers
• Control structures
• Pairs
• Natural numbers
• Addition
• Multiplication

Alex Aiken CS 242 Lecture 2

abstraction operators
c1 = S (S (K K) (S (K S) (S (K K) I))) (K (S (S (K S) (S (K K) I)) (K I)))
c2 = S ((c1 S (c1 K (c1 S (S (c1 c1 I) (K I)))))) (K (c1 K I))
pairs
first = K
second = S K
pair = c2 (c1 c1 (c1 c2 (c1 (c2 I) I))) I
natural numbers
0 = S K
succ = S (S (K S) K)
one = succ 0
add = c2 (c1 c1 (c2 I succ)) I;
mul = c2 (c1 c2 (c2 (c1 c1 I) (c1 add I))) 0;
factorial and auxiliary functions
m = S (c1 mul (c2 I first)) (c2 I second);
i2 = c1 succ (c2 I second)
fac’ = S (c1 pair m) i2
fac = (c2 (c2 I fac’) (pair one one)) first

Reduction Order & Confluence

Alex Aiken CS 242 Lecture 3

Consider …

S I I x →(I x) (I x) → x (I x) → x x

Alex Aiken CS 242 Lecture 3

S I I x

I x I x
xx

x

I x

Choice here!

I x
x

Order of Evaluation

• In a large expression, many rewrite rules may apply

• Which one should we choose?

Alex Aiken CS 242 Lecture 3

Order of Evaluation

• A process for choosing where to apply the rules is a reduction
strategy
• Each rule application is one reduction

• Most languages have a fixed reduction/evaluation order
• So people forget that there might be more than one choice
• But concurrent/parallel languages do provide multiple choices

Alex Aiken CS 242 Lecture 3

Order of Evaluation

 What is a good reduction strategy?

Alex Aiken CS 242 Lecture 3

A Standard Choice

• Normal order
• Traverse the leftmost spine of the expression tree from the root to the leaf

combinator
• If a rewrite rule applies, apply it, and repeat
• Otherwise halt

Alex Aiken CS 242 Lecture 3

Example

S K x y → (K y) (x y) → y

Alex Aiken CS 242 Lecture 3

S K x y K y x y

y

Example

S S x y → (S y) (x y)

Alex Aiken CS 242 Lecture 3

S S x y S y x y

No rule applies because S
doesn’t have enough
arguments, so we stop
here.

Example

S S (K x) y → (S y) (K x y)

Alex Aiken CS 242 Lecture 3

S S y S y y

xK xK

We don’t rewrite here!

Why? In general, rewriting
anywhere other than
along the left spine may
do unnecessary work or
even fail to terminate.

And Another Example

Alex Aiken CS 242 Lecture 3

S I I S I I

IK

I

Doing any reductions other than normal order may waste
computation or loop forever (if we never rewrite the top-level
function application).

Summary: Normal Order

• If any reduction order terminates, normal order will terminate

• Also called lazy evaluation
• Only evaluate what is absolutely necessary to get an answer (if one exists)
• In practice call-by-value is more popular
• But more on that in a later lecture …

• One of the arguments for using combinator languages is parallelism
• Doing more than one reduction at a time
• So not normal order …
• Could anything, besides non-termination, go wrong?

Alex Aiken CS 242 Lecture 3

Confluence

• Could different choices of evaluation order change the (terminating)
result of the program?

• The answer is no!

• A set of rewrite rules is confluent if for any expression E0, if E0 →* E1
and E0 →* E2, then there exists E3 such that E1 →* E3 and E2 →* E3.

Alex Aiken CS 242 Lecture 3

Proving Confluence

Definition:
If for all A, A → B & A → C implies there exists a D such that B → D and
C → D, then → has the one step diamond property.

Thm: If → has the one step diamond property, then → is confluent.

Proof: Assume A →* X & A →* Y. The proof is by induction on the
length of the derivations.

Alex Aiken CS 242 Lecture 3

Diagram

Alex Aiken CS 242 Lecture 3

A

B
C

Confluence of SKI

• So to show that SKI is confluent, it suffices to show it has the one step
diamond property

• Note: The one step diamond property is sufficient, but not necessary,
to prove confluence. But it is a very common proof method for
showing the confluence of rewrite systems.

Alex Aiken CS 242 Lecture 3

Confluence of SKI: Case I x

Alex Aiken CS 242 Lecture 3

I x

I x’
x

x’

Case K x y (1 of 2)

Alex Aiken CS 242 Lecture 3

K x

x

x’

y

K x’

y

Case K x y (2 of 2)

Alex Aiken CS 242 Lecture 3

K x

x

y

K x

y’

Case S x y z (1 of 3)

Alex Aiken CS 242 Lecture 3

S x
y

z

S x’
y

z

x y zz

x’ y zz

Case S x y z (2 of 3)

Alex Aiken CS 242 Lecture 3

S x
y

z

S x
y’

z

x y zz

x y’ zz

Case S x y z (3 of 3)

Alex Aiken CS 242 Lecture 3

S x
y

z

S x
y

z’

x y zz

x y z’z’

?

A New Relation

• → doesn’t have the one step diamond property!
• Because S copies its third argument

• But all is not lost!
• If we can find another rewrite relation that is equivalent to → and has the one step diamond

property, then that will show that → is confluent

• Define X >> Y if
• X → Y via a rewrite at the root node
• X = A B, Y = A’ B’ and A >> A’ and B >> B’

• Easy to see that A >>* B iff A →* B

• Thm: >> has the one step diamond property.

Alex Aiken CS 242 Lecture 3

First, What Does >> Do?

• Allows multiple rewrites as long as they are in independent subtrees

Alex Aiken CS 242 Lecture 3

S x
y

z

S x’
y’

z’

x y zz

>>

>>

S x
y

z

What Does >> Not Do?

• Multiple rewrites must be in independent subtrees

Alex Aiken CS 242 Lecture 3

S x
y

z

x’ y’ z’z’

>>

Case I x

Alex Aiken CS 242 Lecture 3

I x

I x’
x

x’

>>

>>>>

>>

Case K x y (Boring Case)

Alex Aiken CS 242 Lecture 3

K x

y

K x’

y

>>

>> >>

>>

K x

y’

K x’

y’

Case K x y (Interesting Case)

Alex Aiken CS 242 Lecture 3

K x

x

x’

y

K x’

y’

>>

>> >>

>>

Case S x y z (Interesting Case Only …)

Alex Aiken CS 242 Lecture 3

S x
y

z

S x’
y’

z’

x y zz

x’ y’ z’z’

>>

>>

>>

>>

Discussion

• Combinator calculus has the advantage of having no variables
• Compositional!

• All computations are local rewrite rules
• Compute by pattern matching on the shape and contents of a tree
• All operations are local and there are few cases
• No need to worry about variables, scope, renaming ...

• Many proofs of properties are easier in combinator systems
• E.g., confluence

Alex Aiken CS 242 Lecture 3

Discussion

• Combinator calculus has the disadvantage of having no variables

• Consider the S combinator again: S x y z → (x z) (y z)

• Note how z is ``passed’’ to both x and y before the final application

• In a combinator calculus, this is the only way to pass information
• In a language with variables, we would simply stash z in a variable and use it in x and

y as needed
• In a combinator-based language, z must be explicitly passed down to all parts of the

subtree that need it

Alex Aiken CS 242 Lecture 3

Discussion

• Thus, what can be done in one step with a variable requires many
steps (in general) in a pure combinator system

• Why does this matter?
• SKI calculus is not a direct match to the way we build machines

• Our machines have memory locations and can store things in them
• Languages with variables take advantage of this fact

Alex Aiken CS 242 Lecture 3

Discussion

• Another advantage of combinators is working at the function level
• Avoid reasoning about individual data accesses

• A natural fit for parallel and distributed bulk operations on data
• Map a function over all elements of a dataset
• Reduce a dataset to a single value using an associative operator
• Transpose a matrix
• Convolve an image
• ...

• Note that in parallel/distributed operations, variables can be a problem ...

Alex Aiken CS 242 Lecture 3

Summing UP: SKI and Beyond

Alex Aiken CS 242 Lecture 3

History

• SKI calculus was developed by Schoenfinkel in the 1920’s
• One of Hilbert’s students

• Rediscovered by Haskell Curry in the 1930’s

• The properties of SKI were known before any computers were built ...

Alex Aiken CS 242 Lecture 3

History

• First combinator-based programming language was APL
• Designed by Ken Iverson in the 1960’s

• Designed for expressing pipelines of operations on bulk data
• Array programming
• Basic data type is the multidimensional array

• Trivia: Special APL keyboards accommodated the many 1 character combinators
• APL programs tend to be extremely concise

• Highly influential
• On functional programming (several languages)
• And array programming (Matlab, R, NumPy)

Alex Aiken CS 242 Lecture 3

Summary

• Combinator calculi are among the simplest formal computation systems

• Also important in practice for array/collection programming
• Where thinking in terms of bulk operations with built-in iteration is useful

• Not used as a model for sequential computation
• Where we often want to take advantage of temporary storage/variables

• Combinators are also important in program transformations
• Much easier to design combinator-based transformation systems
• Some compilers (Haskell’s GHC) even translate into an intermediate combinator-

based form for some optimizations

Alex Aiken CS 242 Lecture 3

Next Time

• Another primitive calculus

• The lambda calculus
• The basis of functional programming languages
• And much of modern type systems

Alex Aiken CS 242 Lecture 3

