Combinator Calculus

CS242
Lecture 2

Combinator:
A function without free variables

Calculus:
A method of computation or calculation in a special notation

Overview

e A variable-free programming language using only functions
* A simple Turing-complete computational formalism
* A starting point for more involved languages

* And something different!

SKI Calculus

A function call is written by juxtaposing two
expressions
The argument

The function /
> x> X ldentity function

/ WNThe result

The arrow indicates a

step of computation | x v > x Constant functions

Sxyz—>(xz)(yz) Generalized function application

Alex Aiken CS 242 Lecture 2

Multiple Arguments

K A function by itself is a well-formed
program. No rules apply.

No rules apply to K with one argument

K X
K only executes” when it has two
Kxy = x arguments
Kxyz—>xz

K only uses the first two arguments

What is S?

Creates a function

application.
l For a general functional language:
Sxyz—=(xz)(yz)
\ Need a way to program function calls
\ (applications).
Duplicates z

Need to reuse values (make copies).

S combines both.

Alex Aiken CS 242 Lecture 2

Definition

* The terms of the SKI calculus are the smallest set such that
* S, K, and | are terms
* If xand y are terms, then x y is a term

* Terms are trees, not strings
* Parentheses show association where necessary

* In the absence of parentheses, association is to the left
* j.e,Sxyz=(((Sx)y) z)

Example

SKxy

(S K) x) y)

Alex Aiken CS 242 Lecture 2

Example

(((S K) (Kx)) (Sy))

Alex Aiken CS 242 Lecture 2

Context Free Grammar

Expr - S

Expr - K

Expr = |

Expr - Expr Expr
Expr = (Expr)

Expr > S | K| || Expr Expr | (Expr)

Alex Aiken CS 242 Lecture 2

Rewrite Rules

* The three rules of the SKI calculus are an example of a rewrite system

* Any expression (or subexpression) that matches the left-hand side of a rule can be replaced
by the right-hand side

* The symbol - stands for a single rewrite

e The symbol =" stands for the reflexive, transitive closure of -
* j.e., zero or more rewrites

| X 2 X
Kxy —> X
Sxyz—>(xz)(yz)

Alex Aiken CS 242 Lecture 2

Example

SKxy—=>(Ky)(xy)>y

Alex Aiken CS 242 Lecture 2

Example

SKxy—=>(Ky)(xy)>y

A—DA-’ |
S K x vy Ky X y

Alex Aiken CS 242 Lecture 2

What Do These Do?

e Kx =7
*SXy—>"7?

* Answer: Nothing!
* No rewrite rules apply until the combinator has all its arguments
* K xis a partially applied function

* A partially applied function is a function, and can be passed around, copied,
etc.

Another Example

STIx—=>(Ix)(Ix) > x(Ix) > xx

A" /\ﬂ/\-’x x

Alex Aiken CS 242 Lecture 2

And Another Example
SIIx=>(Ix)(Ix) > x(Ix) > xx

So...

(STH)(ST) >SSy =>(stn)astn)>Srnst)

Alex Aiken CS 242 Lecture 2

What a Strange Language!

* A language of functions
* Functions are all there is to work with

* Minimalist
* Typical of languages designed for study
 Clears away the complexity of "real”’ languages
* Allows for very direct illustration of key ideas

Programming

e Recursion
 Conditionals

e Data structures

General Recursion

*(S11)(S11)isanon-terminating expression
e Can always be rewritten, since it rewrites to itself
* A form of looping

e Recursive function calls are just a little more involved
x=S(Kf)(SII)
SOSIIXxX=>"xx=S(K)(SIDNx=>((KF)x)((SI11)x)>"f(xx)>"f(f(xx))

* We will focus on a different form of looping later in the lecture

Alex Aiken CS 242 Lecture 2

Conditionals

* To have branching behavior, we need Booleans.

* We use an encoding.
* We choose combinators to represent true, false
 And combinators not, or, and that have the correct behavior on those values

* An abstract data type
* Except there is no type system to enforce the abstractions

Booleans

* Represent true by a function that picks the first of two arguments
* Represent false by a function that picks the second of two arguments

* True TXxy—->x
* False Fxy—>vy
e T=K

*F=5SK

Alex Aiken CS 242 Lecture 2

Boolean Operations

* Let B be a Boolean (T or F)

*notB=BFT

Alex Aiken CS 242 Lecture 2

Boolean Operations

* Let B be a Boolean (T or F)

*BlorB2=B1TB2

Alex Aiken CS 242 Lecture 2

Boolean Operations

* Let B be a Boolean (T or F)

e Bl and B2 =B1 B2 F=B1B2(SK)

Alex Aiken CS 242 Lecture 2

Example

(notF)and T=(FFT)TF

Alex Aiken CS 242 Lecture 2

If-Then-Else

* Let B be a Boolean

e [fBthen XelseY = BXY

Alex Aiken CS 242 Lecture 2

Writing Combinators

* Let’s say we want a combinator
SWap Xy =V X
* How do we write swap using S, K, and |?

swap =S (K(S1)) (S (KK)I)

Alex Aiken CS 242 Lecture 2

Writing Combinators: A Systematic Approach

* Finding a combinator that implements a given function is not trivial
* Some have nice intuitive definitions (e.g., Booleans)
e Others are completely non-obvious (e.g., swap)

* There is a systematic way to write combinators

 Start with a function equation using variables that specifies what we want
Swap Xy =y X
* An abstraction algorithm A(...) maps the right-hand side to a combinator

* The key is to eliminate the variables by replacing them with uses of the
combinators S, K, and |

Writing Combinators: A Systematic Approach

e Consider a function equation of one variable: f x = E
* If we apply function f to argument x, the result is E

* We want a combinator A(E,x) that implements f
* Therefore A(E,x) x = E
 And A(E,x) doesn’t use x
* We say we abstract E with respect to x

o A(x,x) =1
* A(E,x) =KE if xdoes not appearinE
« A(E1E2,x)=SA(ELx) A(E2,X)

* Note A(...) is not a combinator
* itisa (recursively defined) mapping from expressions with variables to combinators

Alex Aiken CS 242 Lecture 2

Working Through Each Case ...
* A(x,x) =1

* Consider the equation f x = x
e Requires A(x,x) x = x
* And A(x,x) does not use x

e What combinator satisfies these two conditions? |!

Alex Aiken CS 242 Lecture 2

Working Through Each Case ...
 A(E,x) =KE

* Consider the equation f x = E
* Where E does not use x
* Again requires A(E,x) x = E
* And A(E,x) does not use x

* Note that K E does not use x
e Calculate: KEx > E

Alex Aiken CS 242 Lecture 2

Working Through Each Case ...

e A(E1 E2,x) =S A(E1,x) A(E2,X)

* Consider the equation f x = (E1 E2) x
* Requires A(E1 E2,x) x=E1 E2
* And A(x,x) does not use x

* Notice that S A(E1,x) A(E2,x) does not use x

* Calculate:
S A(E1,x) A(E2,x) x = (A(E1,x) x) (A(E2,x) x) > E1 (A(E2,x) x) - E1 E2

Alex Aiken CS 242 Lecture 2

Back To Swap

Recall swap xy =y x

Arguments are abstracted starting with the last argument and progressing to the first argument
* Because (swap x)y =y x
* First abstract y in the definition of swap x, then abstract x from the definition of swap
* We drop the red color for A, just remember it is not a combinator but mapping that produces a combinator from an expression with variables!

First eliminate y in y x:
swap x = Ay x, y) = SA(y,y) Alx,y) = STA(x,y) =S I (Kx)

Now eliminate x from the result of the previous step:
swap =
A(ST(Kx), x) =
SA(SI, x) A(Kx, x) =
S(K(S1)A(Kx, x) =
S (K (S 1)) (S A(K,x) A(x,x)) =
S (K (S 1)) (S (KK) A(x,x)) =
S(K(S1) (S (KK) 1)

~— N~ ~— ~—

Alex Aiken CS 242 Lecture 2

Discussion

* Abstraction is a very simple, systematic algorithm

* But tedious
* The resulting expressions can be huge and hard to read
* Especially if the combinator takes multiple arguments

Improvements

We can introduce helper combinators to reduce the size of abstracted expressions

In S xvy z, often zis only used in one of x or y
* We can avoid copying z and just pass it to the one combinator that uses it

Define
e clxyz=x(yz) —aversionof S where the first argument is constant (doesn’t use z)
e c2xyz=(xz)y —aversionofSwhere the second argument is constant (doesn’t use z)

Add new cases for to the abstraction algorithm for applications that use c1 or c2 if possible
A(E1E2,x) =cl E1 A(E2,x) if x does not appearin E1
A(E1 E2,x) =c2 A(E1,x) E2 if x does not appear in E2
A(E1 E2,x) =S A(E1,x) A(E2,x) otherwise

Alex Aiken CS 242 Lecture 2

Back To Swap, Again ...
* Recall swap xy =y x

* First eliminate y in y x:
Aly x,y) =c2 Aly,y) x=c2 I x

* Now eliminate x from the result of the previous step:
A(c2 | x, x) =
A((c2 1) x, x) =
cl (c2 1) A(x, x) =
cl(c21)!l

Alex Aiken CS 242 Lecture 2

Defining c1

clxyz=x(yz)

Shortcut

Observe that cl xy =S (Kx)y
Thenclx=5S(Kx)
Thencl =A(S (K x), x) =
Note S (K K) I =K
Socl=S(KS)K

S(KS)(S(KK)I)

Running the abstraction algorithm directly gives
e clxyz=x(yz)
e clxy=S(Kx)(S(Ky)l)
e clx=S(K(S(Kx)))(S(S(KS)(S (K
* c1=S(S(KK)(S(KS)(S(KK)I)) (K

The abstraction algorithm is not guaranteed to produce the smallest combinator!

K
(

)
K (S

)
(

)
S

(K
(K

1)

S) (S (KK) 1)) (K

* Butitis guaranteed to give one that is correct

Alex Aiken

1))

CS 242

Lecture 2

Defining c2

ec2xyz=(x2z2)y

* Alx2z)y,z) =S (cl x1) (Ky)

e A(S(c1x1)(Ky),y)=S(K(S(c1xl)))(c1KI)

* A(S(K(S(c1x1)))(c1KI),x)=
S((c1S(c1K(c1S(S(cicll)(KN))))(K(c1KTl))

Alex Aiken CS 242 Lecture 2

Another Abstract Type: Pairs

Pairing must satisfy
pair x y first = x
pair xy second =y
Choose
first=T
second =F
Then
pairxyz=zxy
pairxy=c2(c21x)y
pairx=cl(c2 (c21x)) |
pair=c2(clcl(clc2(cl(c21))))lI

Alex Aiken CS 242 Lecture 2

A Brief Interlude

e SKl is an example of a language with higher-order functions

* Functions can take functions as arguments and return functions as results
* Examples

* swap X

* and B

e pair (and B)

S

* Many languages are first order

* Functions can only work on data types that are not themselves functions

Natural Numbers

n applies its first argument n times to its second argument
nfx=1"(x)

Ofx=x so0=SK
succnfx=f(nfx) succ =S (S (KS) K)

succnfx—=> S(S(KS)K) nfx—=> (S(KS)KFf)(nf)x > ((KS) f) (Kf)(nf)x—>
S(Kf)(nf)x=> ((Kf)x) ((nf)x) > f((nf)x)=Ff(nfx)

Alex Aiken CS 242 Lecture 2

Some Useful Functions

one =succO
add xy =xsuccy
mul xy=x(addy)O

Abstracting add and mul:
add =c2 (c1 cl (c2 I succ)) |
mul=c2(clc2(c2(clcll)(claddl)))O

Alex Aiken CS 242 Lecture 2

Examples
Shorthand: Write i for succ'(0)

10 (+2)0 - 20
2(*2)1->4

Notice how iteration/looping is built-in to the definition of the type.

An example of primitive recursion: The number of times we iterate is
fixed by the element of the type itself.

Alex Aiken CS 242 Lecture 2

Factorial

Standard recursive implementation:
facn=fac’11n

fac’ain=ifi>nthen aelse fac’ (a*i) i+1

Replace arguments a and i by a pair:
facn="fac’ (pair11)n
fac’ pn=if p.2 > nthen p.1 else fac’ (pair (p.2 * p.1) (p.2 + 1))

Now define functions:

m p = * (p second) (p first) = mul (p second) (p first)

i2p=+1(psecond)=succ (p second)

Alex Aiken

Abstract the functions into combinators:
m =S (c1 mul (c2 | first)) (c2 | second);

i2 =cl succ (c2 | second)

Using the combinators:
facn=fac’ (pair11)n
fac’ pn=if p.2 > nthen p.1 else fac’ (pair (m p) (i2 p))

Now use the recursion built into the natural numbers:

fac n = n fac’ (pair one one)

fac’ p = pair (m p) (i2 p)

Abstracting into combinators:

fac =c2 (c2 | fac’) (pair one one)

fac’ =S (c1 pairm)i2

CS 242 Lecture 2

From The Ground Up!

* 14 combinator definitions # abstraction operators
c1 =S5 (S (KK) (S (KS) (S (KK) 1)) (K(S(S(KS)(S(KK)I)(KI))
c2=S((c1S(c1K(c1S(S(clcll)(KI))N))(K(c1K)
pairs
. first =K
* Including second = SK
. pair=c2(clcl(clc2(cl(c21)))I
* Abstraction helpers # natural numbers
0=SK
e Control structures succ =S (S (K S) K)
. one =succ O
* PalrS add =c2 (c1 ¢l (c2 I succ)) |;
® Natural numbers mul=c2 (c1c2(c2(clcll)(claddl)))O;
factorial and auxiliary functions
° Addlthn m =S (c1 mul (c2 | first)) (c2 | second);
i2 = cl succ (c2 | second)
e Multiplication fac’ =S (c1 pair m) i2

fac=c2 (c2 | fac’) (pair one one)

Alex Aiken CS 242 Lecture 2

Next Time ...

* Confluence: A non-trivial property of the SKI calculus

* A brief survey of combinator languages

