Combinator Calculus

CS242
Lecture 2

Combinator:
A function without free variables

Calculus:
A method of computation or calculation in a special notation

Overview

- A variable-free programming language using only functions
- A simple Turing-complete computational formalism
- A starting point for more involved languages
- And something different!

SKI Calculus

A function call is written by juxtaposing two expressions

The arrow indicates a step of computation
$K x y \rightarrow x$

$$
S x y z \rightarrow(x z)(y z)
$$

Identity function

Constant functions

Generalized function application

Multiple Arguments

A function by itself is a well-formed program. No rules apply.
No rules apply to K with one argument
$K x y \rightarrow x$
K only "executes" when it has two arguments
$\mathrm{Kxyz} \rightarrow \mathrm{xz}$
K only uses the first two arguments

What is S ?

For a general functional language:

Need a way to program function calls (applications).

Need to reuse values (make copies).
S combines both.

Definition

- The terms of the SKI calculus are the smallest set such that
- S, K, and I are terms
- If x and y are terms, then $x y$ is a term
- Terms are trees, not strings
- Parentheses show association where necessary
- In the absence of parentheses, association is to the left
- i.e., $S x y z=(((S x) y) z)$

Example

SKxy
(((S K) x) y)

Example

$(((\mathrm{S}$ K) (K x)) (Sy))

Context Free Grammar

```
Expr \(\rightarrow\) S
Expr \(\rightarrow\) K
Expr \(\rightarrow\) I
Expr \(\rightarrow\) Expr Expr
Expr \(\rightarrow\) (Expr)
Expr \(\rightarrow\) S | K \| I | Expr Expr \| (Expr)
```


Rewrite Rules

- The three rules of the SKI calculus are an example of a rewrite system
- Any expression (or subexpression) that matches the left-hand side of a rule can be replaced by the right-hand side
- The symbol \rightarrow stands for a single rewrite
- The symbol \rightarrow^{*} stands for the reflexive, transitive closure of \rightarrow
- i.e., zero or more rewrites

$$
\begin{gathered}
\mathrm{I} x \rightarrow \mathrm{x} \\
\mathrm{~K} x \mathrm{y} \rightarrow \mathrm{x} \\
\mathrm{Sxyz} \rightarrow(\mathrm{xz})(\mathrm{yz})
\end{gathered}
$$

Example

$$
S K x y \rightarrow(K y)(x y) \rightarrow y
$$

Example

$$
S K x y \rightarrow(K y)(x y) \rightarrow y
$$

What Do These Do?

- $K x \rightarrow$?
- Sxy \rightarrow ?
- Answer: Nothing!
- No rewrite rules apply until the combinator has all its arguments
- K x is a partially applied function
- A partially applied function is a function, and can be passed around, copied, etc.

Another Example

$$
\text { SII } x \rightarrow(I x)(I x) \rightarrow x(I x) \rightarrow x x
$$

And Another Example

$$
\text { S II } x \rightarrow(I x)(I x) \rightarrow x(I x) \rightarrow x x
$$

So ...
$(S \mid I)(S \mid I) \rightarrow(I(S \mid I))(I(S \mid I)) \rightarrow(S \mid I)(I(S \mid I)) \rightarrow(S \mid I)(S \mid I)$

What a Strange Language!

- A language of functions
- Functions are all there is to work with
- Minimalist
- Typical of languages designed for study
- Clears away the complexity of "real" languages
- Allows for very direct illustration of key ideas

Programming

- Recursion
- Conditionals
- Data structures

General Recursion

- (S II) (S I I) is a non-terminating expression
- Can always be rewritten, since it rewrites to itself
- A form of looping
- Recursive function calls are just a little more involved

$$
\begin{aligned}
x & =S(K f)(S I I) \\
\text { So } S I I x \rightarrow^{*} x x=S(K f)(S I I) x & \rightarrow((K f) x)((S I I) x) \rightarrow^{*} f(x x) \rightarrow^{*} f(f(x x))
\end{aligned}
$$

- We will focus on a different form of looping later in the lecture

Conditionals

- To have branching behavior, we need Booleans.
- We use an encoding.
- We choose combinators to represent true, false
- And combinators not, or, and that have the correct behavior on those values
- An abstract data type
- Except there is no type system to enforce the abstractions

Booleans

- Represent true by a function that picks the first of two arguments
- Represent false by a function that picks the second of two arguments
- True

$$
T x y \rightarrow x
$$

- False

$$
F x y \rightarrow y
$$

- $\mathrm{T}=\mathrm{K}$
- $\mathrm{F}=\mathrm{SK}$

Boolean Operations

- Let B be a Boolean (T or F)
- not B $=\mathrm{BFT}$

Boolean Operations

- Let B be a Boolean (T or F)
- B1 or B2 = B1 T B2

Boolean Operations

- Let B be a Boolean (T or F)
- B 1 and $\mathrm{B} 2=\mathrm{B} 1 \mathrm{~B} 2 \mathrm{~F}=\mathrm{B} 1 \mathrm{~B} 2(\mathrm{~S}$ K)

Example

(not F$)$ and $\mathrm{T}=(\mathrm{FFT}) \mathrm{T} F$

If-Then-Else

- Let B be a Boolean
- If B then X else $Y=B X Y$

Writing Combinators

- Let's say we want a combinator
swap x y = y x
- How do we write swap using S, K, and I?
swap = S (K (S I)) (S (K K) I)

Writing Combinators: A Systematic Approach

- Finding a combinator that implements a given function is not trivial
- Some have nice intuitive definitions (e.g., Booleans)
- Others are completely non-obvious (e.g., swap)
- There is a systematic way to write combinators
- Start with a function equation using variables that specifies what we want swap x y = y x
- An abstraction algorithm A(...) maps the right-hand side to a combinator
- The key is to eliminate the variables by replacing them with uses of the combinators S, K, and I

Writing Combinators: A Systematic Approach

- Consider a function equation of one variable: $\mathrm{fx}=\mathrm{E}$
- If we apply function f to argument x , the result is E
- We want a combinator $A(E, x)$ that implements f
- Therefore $A(E, x) x=E$
- And $A(E, x)$ doesn't use x
- We say we abstract E with respect to x
- $A(x, x)=1$
- $A(E, x)=K E$ if x does not appear in E
- $A(E 1 E 2, x)=S A(E 1, x) A(E 2, x)$
- Note A(...) is not a combinator
- it is a (recursively defined) mapping from expressions with variables to combinators

Working Through Each Case ...

- $A(x, x)=1$
- Consider the equation $\mathrm{f} x=\mathrm{x}$
- Requires $A(x, x) x=x$
- And $A(x, x)$ does not use x
- What combinator satisfies these two conditions? !!

Working Through Each Case ...

- $A(E, x)=K E$
- Consider the equation $f x=E$
- Where E does not use x
- Again requires $A(E, x) x=E$
- And $A(E, x)$ does not use x
- Note that K E does not use x
- Calculate: K Ex $\rightarrow \mathrm{E}$

Working Through Each Case ...

- $A(E 1 E 2, x)=S A(E 1, x) A(E 2, x)$
- Consider the equation $f x=(E 1 E 2) x$
- Requires A(E1 E2,x) x = E1 E2
- And $A(x, x)$ does not use x
- Notice that SA(E1,x) A(E2,x) does not use x
- Calculate:

$$
S A(E 1, x) A(E 2, x) x \rightarrow(A(E 1, x) x)(A(E 2, x) x) \rightarrow E 1(A(E 2, x) x) \rightarrow E 1 E 2
$$

Back To Swap

- Recall swap $x y=y x$
- Arguments are abstracted starting with the last argument and progressing to the first argument
- Because (swap x) $y=y x$
- First abstract y in the definition of swap x , then abstract x from the definition of swap
- We drop the red color for A, just remember it is not a combinator but mapping that produces a combinator from an expression with variables!
- First eliminate y in $\mathrm{y} x$:

```
swap x = A(y x, y) =S A(y,y)A(x,y)=S I A(x,y) =S I (K x)
```

- Now eliminate x from the result of the previous step:

```
swap =
A(S I (K x), x) =
SA(SI, x)A(K x,x)=
S (K (S I)) A(K x, x) =
S (K (S I)) (S A(K,x) A(x,x)) =
S(K (S I)) (S (K K)A(x,x)) =
S(K (S I)) (S (K K)I)
```


Discussion

- Abstraction is a very simple, systematic algorithm
- But tedious
- The resulting expressions can be huge and hard to read
- Especially if the combinator takes multiple arguments

Improvements

- We can introduce helper combinators to reduce the size of abstracted expressions
- In Sxyz, often z is only used in one of x or y
- We can avoid copying z and just pass it to the one combinator that uses it
- Define
- $c 1 \times y z=x(y z)$ - a version of S where the first argument is constant (doesn't use z)
- $\mathrm{c} 2 \mathrm{xyz}=(\mathrm{xz}) \mathrm{y}$ - a version of S where the second argument is constant (doesn't use z)
- Add new cases for to the abstraction algorithm for applications that use c1 or c2 if possible
$A(E 1 E 2, x)=c 1 E 1 A(E 2, x)$ if x does not appear in E1
$A(E 1 E 2, x)=c 2 A(E 1, x) E 2$ if x does not appear in E2
$A(E 1 E 2, x)=S A(E 1, x) A(E 2, x) \quad$ otherwise

Back To Swap, Again ...

- Recall swap $\mathrm{x} y=\mathrm{y} \mathrm{x}$
- First eliminate y in $\mathrm{y} x$:

$$
A(y x, y)=c 2 A(y, y) x=c 2 I x
$$

- Now eliminate x from the result of the previous step:

$$
\begin{aligned}
& A(c 2 I x, x)= \\
& A((c 2 I) x, x)= \\
& c 1(c 2 I) A(x, x)= \\
& c 1(c 2 I) I
\end{aligned}
$$

Defining c1

- \quad c1 xyz = $x(y z)$
- Shortcut
- Observe that c1 xy=S(Kx)y
- Then c1 x = S (K x)
- Then $c 1=A(S(K x), x)=S(K S)(S(K K) I)$
- Note S (K K) I = K
- So c1 = S (K S) K
- Running the abstraction algorithm directly gives
- $c 1 x y z=x(y z)$
- c1 xy=S (Kx) (S (Ky)I)
- c1 x = S (K (S (K x))) (S (S (K S) (S (K K) I)) (K I))
- $\quad c 1=S(S(K K)(S(K S)(S(K ~ K) I)))(K(S(S(K S)(S(K K) I))(K I)))$
- The abstraction algorithm is not guaranteed to produce the smallest combinator!
- But it is guaranteed to give one that is correct

Defining c2

- $c 2 x y z=(x z) y$
- $A((x z) y, z)=S(c 1 x I)(K y)$
- A(S (c1 x I) (K y), y) = S (K (S (c1 x I))) (c1 K I)
- $A(S(K(S(c 1 \times I)))(c 1 K I), x)=$ S ((c1 S (c1 K (c1 S (S (c1 c1 I) (K I)))))) (K (c1 K I))

Another Abstract Type: Pairs

Pairing must satisfy

$$
\begin{aligned}
& \text { pair } x \text { y first }=x \\
& \text { pair } x \text { y second }=y
\end{aligned}
$$

Choose

$$
\begin{aligned}
& \text { first = T } \\
& \text { second = F }
\end{aligned}
$$

Then

$$
\begin{aligned}
& \text { pair } x y z=z x y \\
& \text { pair } x y=c 2(c 2 \mid x) y \\
& \text { pair } x=c 1(c 2(c 2 \mid x)) \mid \\
& \text { pair }=c 2(c 1 c 1(c 1 c 2(c 1(c 2 \mid) \mid))) \mid
\end{aligned}
$$

A Brief Interlude

- SKI is an example of a language with higher-order functions
- Functions can take functions as arguments and return functions as results
- Examples
- swap x
- and B
- pair (and B)
- S
- Many languages are first order
- Functions can only work on data types that are not themselves functions

Natural Numbers

n applies its first argument n times to its second argument

$$
n f x=f^{n}(x)
$$

$$
\begin{array}{ll}
0 f x=x & \text { so } 0=S K \\
\text { succ } n f x=f(n f x) & \text { succ }=S(S(K S) K)
\end{array}
$$

$$
\text { succ } n f x \rightarrow S(S(K S) K) n f x \rightarrow(S(K S) K f)(n f) x \rightarrow((K S) f)(K f)(n f) x \rightarrow
$$

$$
S(K f)(n f) x \rightarrow((K f) x)((n f) x) \rightarrow f((n f) x)=f(n f x)
$$

Some Useful Functions

```
one = succ 0
add x y = x succ y
mul x y = x (add y) 0
```

Abstracting add and mul:
add $=$ c2 (c1 c1 (c2 I succ)) |
mul = c2 (c1 c2 (c2 (c1 c1 I) (c1 add I))) 0

Examples

Shorthand: Write i for $\operatorname{succ}^{i}(0)$
$10(+2) 0 \rightarrow 20$
2 (*2) $1 \rightarrow 4$

Notice how iteration/looping is built-in to the definition of the type.

An example of primitive recursion: The number of times we iterate is fixed by the element of the type itself.

Factorial

Standard recursive implementation:
fac $\mathrm{n}=$ fac' $^{\prime} 11 \mathrm{n}$
fac' a i $\mathrm{n}=$ if $\mathrm{i}>\mathrm{n}$ then a else $\mathrm{fac}^{\prime}\left(\mathrm{a}^{*} \mathrm{i}\right) \mathrm{i}+1$

Replace arguments a and i by a pair:
fac $n=$ fac' (pair 1 1) n
fac' $\mathrm{p} \mathrm{n}=$ if $\mathrm{p} .2>\mathrm{n}$ then p .1 else fac' (pair (p. 2 * p.1) (p. $2+1$))

Now define functions

$m p=$ * $(p$ second $)(p$ first $)=m u l(p$ second $)(p$ first $)$
i2 $p=+1(p$ second $)=\operatorname{succ}(p$ second $)$

Abstract the functions into combinators:

```
m = S (c1 mul (c2 I first)) (c2 I second);
i2 = c1 succ (c2 I second)
```

Using the combinators:
fac $n=$ fac' (pair 1 1) n
fac' $\mathrm{p} n=$ if $\mathrm{p} .2>\mathrm{n}$ then p .1 else fac' (pair (mp) (i2 p))

Now use the recursion built into the natural numbers:
fac $\mathrm{n}=\mathrm{nfac}{ }^{\prime}$ (pair one one)
fac' $\mathrm{p}=$ pair (mp) (i2 p)

Abstracting into combinators:

$$
\begin{aligned}
& \text { fac }=\text { c2 (c2 I fac') (pair one one) } \\
& \text { fac' }^{\prime}=S(c 1 \text { pair } m) \text { i2 }
\end{aligned}
$$

From The Ground Up!

- 14 combinator definitions
- Including
- Abstraction helpers
- Control structures
- Pairs
- Natural numbers
- Addition
- Multiplication

```
# abstraction operators
c1 = S (S (K K) (S (K S) (S (K K) I)) (K (S (S (K S) (S (K K) I)) (K I)))
c2 = S ((c1 S (c1 K (c1 S (S (c1 c1 I) (K I))))) (K (c1 K I))
# pairs
first = K
second = S K
pair = c2 (c1 c1 (c1 c2 (c1 (c2 I) I))) I
# natural numbers
0 = S K
succ = S (S (K S) K)
one = succ 0
add = c2 (c1 c1 (c2 | succ)) |;
mul = c2 (c1 c2 (c2 (c1 c1 I) (c1 add I))) 0;
# factorial and auxiliary functions
m = S (c1 mul (c2 I first)) (c2 I second);
i2 = c1 succ (c2 I second)
fac' = S (c1 pair m) i2
fac = c2 (c2 | fac') (pair one one)
```

Next Time ...

- Confluence: A non-trivial property of the SKI calculus
- A brief survey of combinator languages

