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CS242: Programming Languages

• All things programming 
languages!

• Different families of 
programming languages
• Including some you may have not 

seen before
• In theory and practice

• Core ideas
• Semantics
• Type systems
• Program analysis 
• Formal verification

• Core features
• Higher-order functions
• Continuations
• Monads
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Course Prerequisites

• Theory: CS 103
• First-order logic, induction, discrete math

• Systems: CS 107 + 110

• Comfortable with programming
• And learning new programming systems 



Course Structure

• Homeworks
• 7 programming assignments
• Roughly weekly, starting second week (56%)
• Expect ~10 hours/week

• Optional readings

• Two exams
• In-class midterm (19%)
• Cumulative final (25%)
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Takeaways

• Appreciation for programming languages as a technical field
• The problems, the values, the “culture”

• Becoming a better programmer
• Learn to think systematically about programming tools

• Understand the future
• What we can do, what we can’t do, what we will likely be able to do

• Survey of some important modern languages

• Basics of active research areas
• Preparation for research

• Thanks to Will Crichton for some of the slides in this lecture!
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The Big Picture: Language Goals
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Productivity

Safety Performance

Python

CCoq, Lean

ML, Haskell Matlab

Rust

Java, C++



Language Goals 

• Every programming language has as goals
• Performance
• Productivity
• Safety

• But there are tradeoffs

• And different designs make different choices
• One of the reasons we have so many programming languages
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Major Facts and Trends
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Programming Languages are Complex Tools
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Software Complexity



Developers Are Reading, Not Writing

Xia et al. “Measuring Program Comprehension: A Large-Scale Field Study with Professionals.” IEEE Trans. Softw. Eng, 2018.

Minelli et al. “I Know What You Did Last Summer: An Investigation of How Developers Spend Their Time” ICPC ’15.



A Slow-Motion Revolution in Hardware



Huge Performance Gaps

Saman Amarasinghe, MIT 6.172 “Performance Engineering”. 2009



Memory Bloat

700 MB!

3 GB!!!



“The majority of vulnerabilities fixed and with a CVE 
assigned are caused by developers inadvertently 
inserting memory corruption bugs into their C and C++ 
code.”

Microsoft Security Response Center. “A proactive approach to more secure code.” 2019

And Persistent Correctness Issues



Software ecosystems are complex at all scales
- From languages to whole systems

Developers mostly comprehend/debug code

The hardware is changing and software often doesn’t 
exploit it well

Bugs aren’t getting any better

Recap



The Long View
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Alan Turing Alonzo Church

“A set of postulates for 
the foundation of logic”, 
1932

“On Computable 
Numbers” 1937



Lambda calculusTuring machines



At that time, the Establishment told us that a 
computer could not write a program; it was 
totally impossible; that all that computers could 
do was arithmetic; that it had none of the 
imagination and dexterity of a human being. I 
kept trying to explain that we were wrapping up 
the human being’s dexterity in the program that 
he wrote.

Grace Hopper 
HOPL Keynote, 1978



John Backus,
“History of FORTRAN” 
1978

Prior to FORTRAN, most source language 
operations were not machine operations. Large 
inefficiencies in looping and computing 
addresses were masked by time spent in floating 
point subroutines. 

The advent of the 704 with built-in floating point 
and indexing radically altered the situation. …It 
increased the problem of generating efficient 
programs by an order of magnitude by speeding 
up floating point operations by a factor of ten 
and thereby leaving inefficiencies nowhere to 
hide. This caused us to regard the design of the 
translator as the real challenge, not the simple 
task of designing the language. 



Alan Perlis,
“The American Side of the 
Development of Algol” 
1978

Algol introduced into programming languages 
such terms as type, declaration, identifier, for 
statement, while, if then else, switch, the 
begin end delimiters, block, call by value and 
call by name, typed procedures, declaration 
scope, dynamic arrays, side effects, global and 
local variables.

Algol was strongly derived from FORTRAN and 
its contemporaries. 



C fits firmly in the traditional procedural family 
typified by Fortran and Algol 60. It is ‘close to the 
machine’ in that the abstractions it introduces are 
readily grounded in the concrete data types and 
operations supplied by conventional computers.

Ken Thompson,
Dennis Ritchie
“The Development 
of the C Language” 
1993



When writing simulation programs we had observed that processes often 
shared a number of common properties, both in data attributes and 
actions, but were structurally different in other respects so that they had to 
be described by separate declarations. Such partial similarity fairly often 
applied to processes in different simulation models, indicating that 
programming effort could be saved by somehow preprogramming the 
common properties.

Kristen Nygaard and Ole-Johan Dahl
“The Development of SIMULA 
Languages”, 1978



[Simula’s] class concept allowed me to map my 
application concepts into the language constructs in 
a direct way. The way Simula classes can act as 
coroutines made the inherent concurrency of my 
application easy to express. 

The implementation of Simula, however, did not 
scale in the same way and as a result the whole 
project came close to disaster. The cost arose from 
several language features and their interactions…Bjarne Stroustrup

“A History of C++: 
1979-1991”, 1993



The team originally considered using C++, but rejected it for several 
reasons. They decided that C++’s complexity led to developer 
errors. The language's lack of garbage collection meant that 
programmers had to manually manage system memory, a 
challenging and error-prone task. The team also worried about the 
C++ language's lack of portable facilities for security, distributed 
programming, and threading. Finally, they wanted a platform that 
would port easily to all types of devices.

Sun Microsystems, 
1997

— Wikipedia



Guido van Rossum
“The Making of 
Python”, 2003

My initial goal for Python was to serve as a second 
language for people who were C or C++ 
programmers, but who had work where writing a C 
program was just not effective.

Maybe it was something you'd do only once. It was 
the sort of thing you'd prefer to write a shell script 
for, but … you needed more data structures, more 
namespaces, or maybe more performance. … 
"Bridge the gap between the shell and C."



The Rust I wanted had no future.The 
Rust I Wanted Had No 
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Turing languages
1957 — FORTRAN 
1959 — ALGOL

1972 — C

1962 — SIMULA

1979 — C++

1995 — Java

1991 — Python

2006 — Rust



John McCarthy,
“History of LISP” 1978

My own research in artificial intelligence [in 
1958]… involved representing information 
about the world by sentences in a suitable 
formal language and a reasoning program 
that would decide what to do by making 
logical inferences. Representing sentences by 
list structure seemed appropriate and a list-
processing language also seemed 
appropriate for programming the operations 
involved in deduction.

…One needs a notation for functions, and it 
seemed natural to use the λ-notation of 
Church (1941). I didn't understand the rest of 
his book, so I wasn't tempted to try to 
implement his more general mechanism for 
defining functions. 



The languages people use to communicate with 
computers differ in their intended aptitudes, 
towards either a particular application area, or a 
particular phase of computer use (high level 
programming, program assembly, job scheduling, 
etc). The question arises, do the idiosyncrasies 
reflect basic logical properties of the situations that 
are being catered for? Or are they accidents of 
history and personal background that may be 
obscuring fruitful developments?

ISWIM is an attempt at a general purpose system for 
describing things in terms of other things, that can 
be problem-oriented by appropriate choice of 
"primitives."  A possible first step in the research 
program is 1700 doctoral theses called "A 
Correspondence between x and Church's λ-
notation.”

Peter Landin,
“The Next 700 
Programming 
Languages” 1966



The principal aims in designing ML were to 
make it impossible to prove non-theorems yet 
easy to program strategies for performing 
proofs.

A strategy—or recipe for proof—could be 
something like “induction on f and g , 
followed by assuming antecedents and doing 
case analysis, all interleaved with 
simplification”. This is imprecise—analysis of 
what cases? what kind of induction, etc, etc.—
but these in turn may well be given by further 
recipes, still in the same style.

Robin Milner,
“A Metalanguage for 
Interactive Proof in 
LCF” 1978



The simplicity and elegance of functional programming captivated the 
present authors. Lazy evaluation— with its direct connection to the 
pure, call-by-name lambda calculus, the remarkable possibility of 
representing and manipulating infinite data structures, and addictively 
simple and beautiful implementation techniques—was like a drug. 

Hudak et al.
“A History of Haskell: 
Being Lazy with 
Class” 2007



Church languages

1959 — LISP

1966 — ISWIM

1978 — ML, FP

1990 — Haskell

1972 — Prolog  

Turing languages
1957 — FORTRAN 
1959 — COBOL, ALGOL

1972 — C, Smalltalk

1962 — SIMULA

1979 — C++

1995 — Java

1991 — Python

1985 — Miranda

2006 — Rust



Church Languages Are Unfamiliar

Couldn't match type `k0' with `b'
  because type variable `b' would escape its scope
This (rigid, skolem) type variable is bound by
  the type signature for
    groupBy :: Ord b => (a -> b) -> Set a -> Set (b, [a])
The following variables have types that mention k0



PL Theory is Unfamiliar (and Dense)

Vezzosi et al. “Cubical Agda: A Dependently Typed Programming Language with Univalence and Higher Inductive Types” ICFP ‘19



The Future
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Change Is Happening

• Software systems tend to be big, slow, and buggy

• There are broad forces at work that are compelling changes
• Security and the increasing dependence on software

• Revolution in the underlying hardware

• A perpetual shortage of skilled programmers
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Change Is Coming

• Software systems are big, slow, and buggy
• And getting more so

• There are broad forces at work that are compelling changes
• Security and the increasing dependence on software

• Software  verification
• Revolution in the underlying hardware

• Moving beyond Turing languages
• A perpetual shortage of skilled programmers

• Automation of programming
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This Course

• Convey ethos of programming languages as a topic of study
• And some of the important techniques

• Illustrate these ideas with examples
• From current practice and research

• Study and use state-of-the-art languages

• See the future before it happens
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Modular design is the key to successful programming. When writing a 
modular program to solve a problem, one first divides the problem into 
subproblems, then solves the subproblems, and finally combines the 
solutions. 

The ways in which one can divide up the original problem depend 
directly on the ways in which one can glue solutions together. Therefore, 
to increase one’s ability to modularize a problem conceptually, one must 
provide new kinds of glue in the programming language. 

— John Hughes, “Why Functional Programming Matters” 1989

More Productivity



fun innerproduct(a, b, n):
  c := 0
  for i := 1 step 1 until n do
    c := c + a[i] * b[i]
  return c

• Statements operate on invisible state
• Computes word-at-a-time by repetition of assignment/modification
• Requires names for arguments, iterator, return value

let innerproduct = zip |> (map *) |> (reduce +)

• Built from composable functions (map, reduce, pipe)
• Operates on whole conceptual units (lists), no repeated steps
• No names for arguments or temporaries



More Performance
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Messenger used to receive bugs reports on a daily basis; since the 
introduction of Reason, there have been a total of 10 bugs (that's during 
the whole year, not per week)! Refactoring speed went from days to 
hours to dozens of minutes.

— “Messenger.com Now 50% Converted to Reason” 2017

Being able to encode constraints of your application in the type system 
makes it possible to refactor, modify, or replace large swaths of code with 
confidence. Rust's error model forces developers to handle every corner 
case. [Our system] needs very little attention. We were able to leave it 
running without any issues through the holiday break.

— “Rust at OneSignal” 2017

More Safety



• The world of software will change significantly

• The changes are driven by 
- New ideas in programming
- Changes in underlying hardware
- Changes in needs (e.g., security)

• In this course we will focus on
- The new programming ideas
- And the intellectual tools to understand the next generation of ideas

Summary


