
Programming Languages
CS242

Lecture 1

Alex Aiken CS 242 Lecture 1

Course Staff

Alex Aiken CS 242 Lecture 1

Alex Aiken

Qiantan Hong

Colin Unger

Ben Driscoll

Important Info

See cs242.stanford.edu for other important course information

Alex Aiken CS 242 Lecture 1

CS242: Programming Languages

• All things programming
languages!

• Different families of
programming languages
• Including some you may have not

seen before
• In theory and practice

• Core ideas
• Semantics
• Type systems
• Program analysis
• Formal verification

• Core features
• Higher-order functions
• Continuations
• Monads

Alex Aiken CS 242 Lecture 1

Course Prerequisites

• Theory: CS 103
• First-order logic, induction, discrete math

• Systems: CS 107 + 110

• Comfortable with programming
• And learning new programming systems

Course Structure

• Homeworks
• 7 programming assignments
• Roughly weekly, starting second week (56%)
• Expect ~10 hours/week

• Optional readings

• Two exams
• In-class midterm (19%)
• Cumulative final (25%)

Alex Aiken CS 242 Lecture 1

Takeaways

• Appreciation for programming languages as a technical field
• The problems, the values, the “culture”

• Becoming a better programmer
• Learn to think systematically about programming tools

• Understand the future
• What we can do, what we can’t do, what we will likely be able to do

• Survey of some important modern languages

• Basics of active research areas
• Preparation for research

• Thanks to Will Crichton for some of the slides in this lecture!

Alex Aiken CS 242 Lecture 1

The Big Picture: Language Goals

Alex Aiken CS 242 Lecture 1

Productivity

Safety Performance

Python

CCoq, Lean

ML, Haskell Matlab

Rust

Java, C++

Language Goals

• Every programming language has as goals
• Performance
• Productivity
• Safety

• But there are tradeoffs

• And different designs make different choices
• One of the reasons we have so many programming languages

Alex Aiken CS 242 Lecture 1

Major Facts and Trends

Alex Aiken CS 242 Lecture 1

Programming Languages are Complex Tools

Alex Aiken CS 242 Lecture 1

Software Complexity

Developers Are Reading, Not Writing

Xia et al. “Measuring Program Comprehension: A Large-Scale Field Study with Professionals.” IEEE Trans. Softw. Eng, 2018.

Minelli et al. “I Know What You Did Last Summer: An Investigation of How Developers Spend Their Time” ICPC ’15.

A Slow-Motion Revolution in Hardware

Huge Performance Gaps

Saman Amarasinghe, MIT 6.172 “Performance Engineering”. 2009

Memory Bloat

700 MB!

3 GB!!!

“The majority of vulnerabilities fixed and with a CVE
assigned are caused by developers inadvertently
inserting memory corruption bugs into their C and C++
code.”

Microsoft Security Response Center. “A proactive approach to more secure code.” 2019

And Persistent Correctness Issues

Software ecosystems are complex at all scales
- From languages to whole systems

Developers mostly comprehend/debug code

The hardware is changing and software often doesn’t
exploit it well

Bugs aren’t getting any better

Recap

The Long View

Alex Aiken CS 242 Lecture 1

Alan Turing Alonzo Church

“A set of postulates for
the foundation of logic”,
1932

“On Computable
Numbers” 1937

Lambda calculusTuring machines

At that time, the Establishment told us that a
computer could not write a program; it was
totally impossible; that all that computers could
do was arithmetic; that it had none of the
imagination and dexterity of a human being. I
kept trying to explain that we were wrapping up
the human being’s dexterity in the program that
he wrote.

Grace Hopper
HOPL Keynote, 1978

John Backus,
“History of FORTRAN”
1978

Prior to FORTRAN, most source language
operations were not machine operations. Large
inefficiencies in looping and computing
addresses were masked by time spent in floating
point subroutines.

The advent of the 704 with built-in floating point
and indexing radically altered the situation. …It
increased the problem of generating efficient
programs by an order of magnitude by speeding
up floating point operations by a factor of ten
and thereby leaving inefficiencies nowhere to
hide. This caused us to regard the design of the
translator as the real challenge, not the simple
task of designing the language.

Alan Perlis,
“The American Side of the
Development of Algol”
1978

Algol introduced into programming languages
such terms as type, declaration, identifier, for
statement, while, if then else, switch, the
begin end delimiters, block, call by value and
call by name, typed procedures, declaration
scope, dynamic arrays, side effects, global and
local variables.

Algol was strongly derived from FORTRAN and
its contemporaries.

C fits firmly in the traditional procedural family
typified by Fortran and Algol 60. It is ‘close to the
machine’ in that the abstractions it introduces are
readily grounded in the concrete data types and
operations supplied by conventional computers.

Ken Thompson,
Dennis Ritchie
“The Development
of the C Language”
1993

When writing simulation programs we had observed that processes often
shared a number of common properties, both in data attributes and
actions, but were structurally different in other respects so that they had to
be described by separate declarations. Such partial similarity fairly often
applied to processes in different simulation models, indicating that
programming effort could be saved by somehow preprogramming the
common properties.

Kristen Nygaard and Ole-Johan Dahl
“The Development of SIMULA
Languages”, 1978

[Simula’s] class concept allowed me to map my
application concepts into the language constructs in
a direct way. The way Simula classes can act as
coroutines made the inherent concurrency of my
application easy to express.

The implementation of Simula, however, did not
scale in the same way and as a result the whole
project came close to disaster. The cost arose from
several language features and their interactions…Bjarne Stroustrup

“A History of C++:
1979-1991”, 1993

The team originally considered using C++, but rejected it for several
reasons. They decided that C++’s complexity led to developer
errors. The language's lack of garbage collection meant that
programmers had to manually manage system memory, a
challenging and error-prone task. The team also worried about the
C++ language's lack of portable facilities for security, distributed
programming, and threading. Finally, they wanted a platform that
would port easily to all types of devices.

Sun Microsystems,
1997

— Wikipedia

Guido van Rossum
“The Making of
Python”, 2003

My initial goal for Python was to serve as a second
language for people who were C or C++
programmers, but who had work where writing a C
program was just not effective.

Maybe it was something you'd do only once. It was
the sort of thing you'd prefer to write a shell script
for, but … you needed more data structures, more
namespaces, or maybe more performance. …
"Bridge the gap between the shell and C."

The Rust I wanted had no future.The
Rust I Wanted Had No

Alex Aiken CS 242 Lecture 1

Graydon Hoare

Turing languages
1957 — FORTRAN
1959 — ALGOL

1972 — C

1962 — SIMULA

1979 — C++

1995 — Java

1991 — Python

2006 — Rust

John McCarthy,
“History of LISP” 1978

My own research in artificial intelligence [in
1958]… involved representing information
about the world by sentences in a suitable
formal language and a reasoning program
that would decide what to do by making
logical inferences. Representing sentences by
list structure seemed appropriate and a list-
processing language also seemed
appropriate for programming the operations
involved in deduction.

…One needs a notation for functions, and it
seemed natural to use the λ-notation of
Church (1941). I didn't understand the rest of
his book, so I wasn't tempted to try to
implement his more general mechanism for
defining functions.

The languages people use to communicate with
computers differ in their intended aptitudes,
towards either a particular application area, or a
particular phase of computer use (high level
programming, program assembly, job scheduling,
etc). The question arises, do the idiosyncrasies
reflect basic logical properties of the situations that
are being catered for? Or are they accidents of
history and personal background that may be
obscuring fruitful developments?

ISWIM is an attempt at a general purpose system for
describing things in terms of other things, that can
be problem-oriented by appropriate choice of
"primitives." A possible first step in the research
program is 1700 doctoral theses called "A
Correspondence between x and Church's λ-
notation.”

Peter Landin,
“The Next 700
Programming
Languages” 1966

The principal aims in designing ML were to
make it impossible to prove non-theorems yet
easy to program strategies for performing
proofs.

A strategy—or recipe for proof—could be
something like “induction on f and g ,
followed by assuming antecedents and doing
case analysis, all interleaved with
simplification”. This is imprecise—analysis of
what cases? what kind of induction, etc, etc.—
but these in turn may well be given by further
recipes, still in the same style.

Robin Milner,
“A Metalanguage for
Interactive Proof in
LCF” 1978

The simplicity and elegance of functional programming captivated the
present authors. Lazy evaluation— with its direct connection to the
pure, call-by-name lambda calculus, the remarkable possibility of
representing and manipulating infinite data structures, and addictively
simple and beautiful implementation techniques—was like a drug.

Hudak et al.
“A History of Haskell:
Being Lazy with
Class” 2007

Church languages

1959 — LISP

1966 — ISWIM

1978 — ML, FP

1990 — Haskell

1972 — Prolog

Turing languages
1957 — FORTRAN
1959 — COBOL, ALGOL

1972 — C, Smalltalk

1962 — SIMULA

1979 — C++

1995 — Java

1991 — Python

1985 — Miranda

2006 — Rust

Church Languages Are Unfamiliar

Couldn't match type `k0' with `b'
 because type variable `b' would escape its scope
This (rigid, skolem) type variable is bound by
 the type signature for
 groupBy :: Ord b => (a -> b) -> Set a -> Set (b, [a])
The following variables have types that mention k0

PL Theory is Unfamiliar (and Dense)

Vezzosi et al. “Cubical Agda: A Dependently Typed Programming Language with Univalence and Higher Inductive Types” ICFP ‘19

The Future

Alex Aiken CS 242 Lecture 1

Change Is Happening

• Software systems tend to be big, slow, and buggy

• There are broad forces at work that are compelling changes
• Security and the increasing dependence on software

• Revolution in the underlying hardware

• A perpetual shortage of skilled programmers

Alex Aiken CS 242 Lecture 1

Change Is Coming

• Software systems are big, slow, and buggy
• And getting more so

• There are broad forces at work that are compelling changes
• Security and the increasing dependence on software

• Software verification
• Revolution in the underlying hardware

• Moving beyond Turing languages
• A perpetual shortage of skilled programmers

• Automation of programming

Alex Aiken CS 242 Lecture 1

This Course

• Convey ethos of programming languages as a topic of study
• And some of the important techniques

• Illustrate these ideas with examples
• From current practice and research

• Study and use state-of-the-art languages

• See the future before it happens

Alex Aiken CS 242 Lecture 1

Modular design is the key to successful programming. When writing a
modular program to solve a problem, one first divides the problem into
subproblems, then solves the subproblems, and finally combines the
solutions.

The ways in which one can divide up the original problem depend
directly on the ways in which one can glue solutions together. Therefore,
to increase one’s ability to modularize a problem conceptually, one must
provide new kinds of glue in the programming language.

— John Hughes, “Why Functional Programming Matters” 1989

More Productivity

fun innerproduct(a, b, n):
 c := 0
 for i := 1 step 1 until n do
 c := c + a[i] * b[i]
 return c

• Statements operate on invisible state
• Computes word-at-a-time by repetition of assignment/modification
• Requires names for arguments, iterator, return value

let innerproduct = zip |> (map *) |> (reduce +)

• Built from composable functions (map, reduce, pipe)
• Operates on whole conceptual units (lists), no repeated steps
• No names for arguments or temporaries

More Performance

Alex Aiken CS 242 Lecture 1

Messenger used to receive bugs reports on a daily basis; since the
introduction of Reason, there have been a total of 10 bugs (that's during
the whole year, not per week)! Refactoring speed went from days to
hours to dozens of minutes.

— “Messenger.com Now 50% Converted to Reason” 2017

Being able to encode constraints of your application in the type system
makes it possible to refactor, modify, or replace large swaths of code with
confidence. Rust's error model forces developers to handle every corner
case. [Our system] needs very little attention. We were able to leave it
running without any issues through the holiday break.

— “Rust at OneSignal” 2017

More Safety

• The world of software will change significantly

• The changes are driven by
- New ideas in programming
- Changes in underlying hardware
- Changes in needs (e.g., security)

• In this course we will focus on
- The new programming ideas
- And the intellectual tools to understand the next generation of ideas

Summary

