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CS242: Programming Languages

* All things programming * Core ideas
languages! « Semantics

* Type systems

* Program analysis

e Different families of L
 Formal verification

programming languages

* Including some you may have not * Core features
seen before * Higher-order functions

* In theory and practice * Continuations
* Monads



Course Prerequisites

* Theory: CS 103

 First-order logic, induction, discrete math

* Systems: CS 107 + 110

* Comfortable with programming
* And learning new programming systems



Course Structure

* Homeworks
* 7 programming assignments
* Roughly weekly, starting second week (56%)
* Expect ~10 hours/week

e Optional readings

* TWO exams
* In-class midterm (19%)
e Cumulative final (25%)



Takeaways

* Appreciation for programming languages as a technical field
* The problems, the values, the “culture”

* Becoming a better programmer
* Learn to think systematically about programming tools

* Understand the future
* What we can do, what we can’t do, what we will likely be able to do

e Survey of some important modern languages

* Basics of active research areas
* Preparation for research

 Thanks to Will Crichton for some of the slides in this lecture!



The Big Picture: Language Goals

Python

Productivity

ML, Haskell Matlab

Safety Performance

Coq, Lean Rust C
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Language Goals

* Every programming language has as goals
* Performance
* Productivity
e Safety

e But there are tradeoffs

* And different designs make different choices
* One of the reasons we have so many programming languages



Major Facts and Trends



Programming Languages are Complex Tools
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std::move_if noexcept

Defined in header <utility>
template< class T >

typename std::conditional< (since
I'std::is _nothrow move constructible<T>::value && std::is copy constructible<T>::value, C++11)
const T&, (until
T&& C++14)

>::type move if noexcept(T& x) noexcept;

template< class T >
constexpr typename std::conditional<

Istd::is_nothrow_move_ constructible<T>::value && std::is copy constructible<T>::value, (since
const T&, C++14)
T&&

>::type move if noexcept(T& x) noexcept;

move_if noexcept obtains an rvalue reference to its argument if its move constructor does not throw exceptions or if
there is no copy constructor (move-only type), otherwise obtains an lvalue reference to its argument. It is typically
used to combine move semantics with strong exception guarantee.

Parameters

x - the object to be moved or copied

Return value

std::move(x) or x, depending on exception guarantees.

Notes

This is used, for example, by std: :vector::resize, which may have to allocate new storage and then move or copy
elements from old storage to new storage. If an exception occurs during this operation, std: :vector::resize undoes
everything it did to this point, which is only possible if std: :move if noexcept was used to decide whether to use
move construction or copy construction. (unless copy constructor is not available, in which case move constructor is
used either way and the strong exception guarantee may be waived)

Example
Run this code

#include <iostream>

Hinecliide <11+1711+vus



6.7.3.1 Formal definition of restrict

Let D be a declaration of an ordinary identifier that provides a means of designating an
object P as a restrict-qualified pointer to type T.

If D appears inside a block and does not have storage class extern, let B denote the
block. If D appears in the list of parameter declarations of a function definition, let B
denote the associated block. Otherwise, let B denote the block of main (or the block of
whatever function is called at program startup in a freestanding environment).

In what follows, a pointer expression E is said to be based on object P if (at some
sequence point in the execution of B prior to the evaluation of E) modifying P to point to
a copy of the array object into which it formerly pointed would change the value of E.!1®)
Note that ““based” is defined only for expressions with pointer types.

During each execution of B, let L. be any lvalue that has &L based on P. If L is used to
access the value of the object X that it designates, and X is also modified (by any means),
then the following requirements apply: T shall not be const-qualified. Every other lvalue
used to access the value of X shall also have its address based on P. Every access that
modifies X shall be considered also to modify P, for the purposes of this subclause. If P
is assigned the value of a pointer expression E that is based on another restricted pointer
object P2, associated with block B2, then either the execution of B2 shall begin before
the execution of B, or the execution of B2 shall end prior to the assignment. If these
requirements are not met, then the behavior is undefined.

Here an execution of B means that portion of the execution of the program that would
correspond to the lifetime of an object with scalar type and automatic storage duration



Software Complexity
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Developers Are Reading, Not Writing

Editing (~5%) Navigation (~4%)

Outside IDE (~8%) 4+

ks

Ul Interactions
(~14%)

Minelli et al. “I Know What You Did Last Summer: An Investigation of How Developers Spend Their Time” ICPC "15.

Project = Comprehension Navigation Editing  Others
Average 57.62% 23.96% 5.02%  13.40%

Xia et al. “Measuring Program Comprehension: A Large-Scale Field Study with Professionals.” IEEE Trans. Softw. Eng, 2018.




A Slow-Motion Revolution in Hardware

Dual-Core Itanium 2
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Image credit:“The free Lunch is Over” by Herb Sutter, Dr. Dobbs 2005

CMU 15-418/618, Spring 2017



Huge Performance Gaps

Double No BLAS BLAS
Immutable Mutable Only Objects INnC Transposed Tiled Vectorized MxM  Parallel
ms 17,094,152 77,826 32,800 15,306 7,530 2,275 1,388 511 196 58
219.7x 2.2x 3.4x 2.8x 3.5x
2.4x 2.1x 1.7x 2.7x
219.7x
522x
1117x
|
2271x
7514x
12316x
f
33453x
|
87042x
296260x
Cycles/OP 8,358 38 16 7 4 1 1/2 1/5 1/11 1/36

Saman Amarasinghe, MIT 6.172 “Performance Engineering”. 2009



Memory Bloat

Process Name
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700 MB!
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3 GB!!!

Co



% of CVEs

A

nd Persistent Correctness Issues

“The majority of vulnerabilities fixed and with a CVE

d

ssigned are caused by developers inadvertently

inserting memory corruption bugs into their C and C++
code.”
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Microsoft Security Response Center. “A proactive approach to more secure code.” 2019



Recap

Software ecosystems are complex at all scales
- From languages to whole systems

Developers mostly comprehend/debug code

The hardware is changing and software often doesn’t
exploit it well

Bugs aren’t getting any better



The Long View



Alan Turing Alonzo Church

“A set of postulates for

“On Computable . .
Numbers” 1937 the foundation of logic”,

1932



Turing machines Lambda calculus
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Grace Hopper
HOPL Keynote, 1978

At that time, the Establishment told us that a
computer could not write a program; it was
totally impossible; that all that computers could
do was arithmetic; that it had none of the
imagination and dexterity of a human being. |
kept trying to explain that we were wrapping up
the human being’s dexterity in the program that
he wrote.



John Backus,

“History of FORTRAN”
1978

Prior to FORTRAN, most source language
operations were not machine operations. Large
inefficiencies in looping and computing
addresses were masked by time spent in floating
point subroutines.

The advent of the 704 with built-in floating point
and indexing radically altered the situation. ...It
increased the problem of generating efficient
programs by an order of magnitude by speeding
up floating point operations by a factor of ten
and thereby leaving inefficiencies nowhere to
hide. This caused us to regard the design of the
translator as the real challenge, not the simple
task of designing the language.



Alan Perlis,

“The American Side of the
Development of Algol”
1978

Algol introduced into programming languages
such terms as type, declaration, identifier, for
statement, while, if then else, switch, the
begin end delimiters, block, call by value and
call by name, typed procedures, declaration

scope, dynamic arrays, side effects, global and
local variables.

Algol was strongly derived from FORTRAN and
its contemporaries.



Ken Thompson,
Dennis Ritchie

“The Development
of the C Language”
1993

C fits firmly in the traditional procedural family
typified by Fortran and Algol 60. It is ‘close to the
machine’ in that the abstractions it introduces are
readily grounded in the concrete data types and
operations supplied by conventional computers.



Kristen Nygaard and Ole-Johan Dahl

“The Development of SIMULA
Languages”, 1978

When writing simulation programs we had observed that processes often
shared a number of common properties, both in data attributes and
actions, but were structurally different in other respects so that they had to
be described by separate declarations. Such partial similarity fairly often
applied to processes in different simulation models, indicating that
programming effort could be saved by somehow preprogramming the
common properties.



Bjarne Stroustrup

“A History of C++:
1979-1991”, 1993

[Simula’s] class concept allowed me to map my
application concepts into the language constructs in
a direct way. The way Simula classes can act as
coroutines made the inherent concurrency of my

application easy to express.

The implementation of Simula, however, did not
scale in the same way and as a result the whole
project came close to disaster. The cost arose from
several language features and their interactions...



Sun Microsystems,
1997

The team originally considered using C++, but rejected it for several
reasons. They decided that C++’s complexity led to developer
errors. The language's lack of garbage collection meant that
programmers had to manually manage system memory, a
challenging and error-prone task. The team also worried about the
C++ language's lack of portable facilities for security, distributed

programming, and threading. Finally, they wanted a platform that
would port easily to all types of devices.

— Wikipedia



Guido van Rossum

“The Making of
Python”, 2003

My initial goal for Python was to serve as a second
language for people who were C or C++
programmers, but who had work where writing a C
program was just not effective.

Maybe it was something you'd do only once. It was
the sort of thing you'd prefer to write a shell script
for, but ... you needed more data structures, more
namespaces, or maybe more performance. ...
"Bridge the gap between the shell and C."



The Rust | wanted had no future.

!

Graydon Hoare
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Turing languages

1957 — FORTRAN
1959 — ALGOL
1962 — SIMULA

1972 — C

1979 — C++

1991 — Python
1995 — Java

2006 — Rust



John McCarthy,
“History of LISP” 1978

My own research in artificial intelligence [in
1958]... involved representing information
about the world by sentences in a suitable
formal language and a reasoning program
that would decide what to do by making
logical inferences. Representing sentences by
list structure seemed appropriate and a list-
processing language also seemed
appropriate for programming the operations
involved in deduction.

...One needs a notation for functions, and it
seemed natural to use the A-notation of
Church (1941). | didn't understand the rest of
his book, so | wasn't tempted to try to
implement his more general mechanism for
defining functions.



-

Peter Landin,

“The Next 700
Programming
Languages” 1966

The languages people use to communicate with
computers differ in their intended aptitudes,
towards either a particular application area, or a
particular phase of computer use (high level
programming, program assembly, job scheduling,
etc). The question arises, do the idiosyncrasies
reflect basic logical properties of the situations that
are being catered for? Or are they accidents of
history and personal background that may be
obscuring fruitful developments?

ISWIM is an attempt at a general purpose system for
describing things in terms of other things, that can
be problem-oriented by appropriate choice of
"primitives." A possible first step in the research
program is 1700 doctoral theses called "A
Correspondence between x and Church's A-
notation.”



Robin Milner,

“A Metalanguage for
Interactive Proof in
LCF” 1978

The principal aims in designing ML were to
make it impossible to prove non-theorems yet
easy to program strategies for performing
proofs.

A strategy—or recipe for proof—could be
something like “inductionon fand g,
followed by assuming antecedents and doing
case analysis, all interleaved with
simplification”. This is imprecise—analysis of
what cases? what kind of induction, etc, etc.—
but these in turn may well be given by further
recipes, still in the same style.



Hudak et al.

“A History of Haskell:
Being Lazy with
Class” 2007

The simplicity and elegance of functional programming captivated the
present authors. Lazy evaluation— with its direct connection to the
pure, call-by-name lambda calculus, the remarkable possibility of
representing and manipulating infinite data structures, and addictively
simple and beautiful implementation techniques—was like a drug.



Turing languages

1957 — FORTRAN
1959 — COBOL, ALGOL
1962 — SIMULA

1972 — C, Smalltalk

1979 — C++

1991 — Python
1995 — Java

2006 — Rust

Church languages

1959 — LISP

1966 — ISWIM
1972 — Prolog
1978 — ML, FP

1985 — Miranda
1990 — Haskell



Church Languages Are Unfamiliar

Functor Apply e Semigroup
/ '
Comonad Applicative |« « oo Monoid | - - o o Category
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R NGV
Traversable MonadFix MonadPlus ArrowApply ArrowChoice ArrowLoop

Couldn't match type k@' with "b'
because type variable "b' would escape its scope
This (rigid, skolem) type variable is bound by
the type signature for
groupBy :: Ord b == (a —> b) —> Set a -> Set (b, [al])
The following variables have types that mention k@



PL Theory is Unfamiliar (and Dense)
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Vezzosi et al. “Cubical Agda: A Dependently Typed Programming Language with Univalence and Higher Inductive Types” ICFP ‘19



The Future



Change Is Happening

e Software systems tend to be big, slow, and buggy

* There are broad forces at work that are compelling changes
e Security and the increasing dependence on software

e Revolution in the underlying hardware

* A perpetual shortage of skilled programmers



Change Is Coming

e Software systems are big, slow, and buggy
* And getting more so

* There are broad forces at work that are compelling changes
» Security and the increasing dependence on software
e Software verification
* Revolution in the underlying hardware
* Moving beyond Turing languages
* A perpetual shortage of skilled programmers
* Automation of programming

Alex Aiken CS242 Lecturel



This Course

* Convey ethos of programming languages as a topic of study
* And some of the important techniques

* |llustrate these ideas with examples
* From current practice and research

e Study and use state-of-the-art languages

* See the future before it happens



More Productivity

Modular design is the key to successful programming. When writing a
modular program to solve a problem, one first divides the problem into
subproblems, then solves the subproblems, and finally combines the
solutions.

The ways in which one can divide up the original problem depend
directly on the ways in which one can glue solutions together. Therefore,
to increase one’s ability to modularize a problem conceptually, one must
provide new kinds of glue in the programming language.

— John Hughes, “Why Functional Programming Matters” 1989



fun innerproduct(a, b, n):
c :=0
for 1 := 1 step 1 until n do
c :=c + ali] % b[il
return C

e Statements operate on invisible state
e Computes word-at-a-time by repetition of assighment/modification
e Requires names for arguments, iterator, return value

let innerproduct = zip |> (map *) |> (reduce +)

e Built from composable functions (map, reduce, pipe)
e QOperates on whole conceptual units (lists), no repeated steps
e No names for arguments or temporaries



More Performance

PCI Express 3.0 Host Interface

= = 5
NVLink — Two x8 Links
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More Safety

Messenger used to receive bugs reports on a daily basis; since the
introduction of Reason, there have been a total of 10 bugs (that's during
the whole year, not per week)! Refactoring speed went from days to
hours to dozens of minutes.

— “Messenger.com Now 50% Converted to Reason” 2017

Being able to encode constraints of your application in the type system
makes it possible to refactor, modify, or replace large swaths of code with
confidence. Rust's error model forces developers to handle every corner
case. [Our system] needs very little attention. We were able to leave it
running without any issues through the holiday break.

— “Rust at OneSignal” 2017



Summary

- The world of software will change significantly

- The changes are driven by
- New ideas in programming
- Changes in underlying hardware
- Changes in needs (e.g., security)

- In this course we will focus on
- The new programming ideas
- And the intellectual tools to understand the next generation of ideas



