
CS242 Midterm
Fall 2022

• Please read all instructions (including these) carefully.

• There are 4 questions on the exam, some with multiple parts. You have 80 minutes to
work on the exam.

• The exam is open note. You may use laptops, phones and e-readers to read electronic
notes, but not for computation or access to the internet for any reason.

• Please write your answers in the space provided on the exam, and clearly mark your
solutions. Do not write on the back of exam pages or other pages.

• Solutions will be graded on correctness and clarity. Each problem has a relatively simple
and straightforward solution. You may get as few as 0 points for a question if your solution
is far more complicated than necessary. Partial solutions will be graded for partial credit.

NAME:

In accordance with both the letter and spirit of the Honor Code, I have neither given nor
received assistance on this examination.

SIGNATURE:

Problem Max points Points
1 30
2 15
3 15
4 20

TOTAL 80
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1. Lambda Calculus (30 points)
Recall the following seven definitions of booleans, integers, and lists from HW2:

T = λx.λy. x;
F = λx.λy. y;
not = λb. b F T;
0 = λf.λx. x;
inc = λn.λf.λx. f (n f x);
cons = λh.λt.λf.λx. f h (t f x);
nil = λf.λx. x;

We add three additional functions:

add: (add x y) evaluates to x + y.

dec: (dec n) evaluates to n − 1 if n ≥ 1, and to 0 otherwise.
is_zero: (is_zero n) evaluates to true (T) if n = 0, and false (F) otherwise.

Write the following functions in the untyped lambda calculus. You may use the 10 func-
tions above as part of your solutions. You may define helper functions if you wish (but
you must also include the implementations of any helper functions).

(a) equal: (equal x y), where x and y are natural numbers, returns true (T) if x = y
and false (F) otherwise.
Answer: Define

sub = λx. λy. y dec x.

Noting that sub x y evaluates to zero if x < y, we then have

equal = λx. λy. is_zero (add (sub x y) (sub y x)).

(b) map: (map f l) applies the function f to every element of list l and returns the
resulting list. For example, map inc (cons 0 (cons 1 (cons 2 nil))) returns
cons 1 (cons 2 (cons 3 nil))).
Answer: map = λf. λl. l (λh. λt. cons (f h) t) nil
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2. Object Calculus (15 points)
Implement a stack data structure in the object calculus. Your solution should be an object
with the following three methods:

• arg: the argument to be pushed, expressed as a constant method. The arg method
is initially ς(x) x.

• push: pushes the value of arg onto the stack and resets arg to ς(x) x.
• pop: returns an object with the stack popped and the former top of the stack in arg.

For example, if s is the empty stack, the sequence of operations

s.(arg ⇐ ς(x) 3).push

returns an object where the stack contains 3 and arg is ς(x) x. The sequence of operations

s.(arg ⇐ ς(x) 3).push.pop

returns an object where the stack is empty and arg is ς(x) 3. The sequence of operations

s.(arg ⇐ ς(x) 3).push.pop.arg

returns 3. Finally, popping an empty stack is the identity: s.pop returns s.

Initially a stack object has the form:

[arg = ς(x) x, push = ?, pop = ?]

Give the implementation of the push and pop methods. Hint: You may find it helpful to
use a backup method.
Answer:

[arg = ς(x) x, push = ς(x) x.(pop ⇐ ς(y) x).(arg ⇐ ς(x) x), pop = ς(x) x]
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3. Types (15 points)
Recall the grammar for the simply typed lambda calculus:

e ::= x | λx: τ. e | e e

τ ::= α | τ → τ

where x stands for a family of program variables x, y, z, . . . and α stands for a family of
type variables α, β, γ, . . ..
For each of the types τ below, give an expression in the simply typed lambda calculus
that has type τ . For example, for the type α → α, one possible solution is λx: α. x.

(a) α → β → α

Answer: λx: α. λy: β. x

(b) (α → α) → α → α

Answer: λf : α → α. λx: α. f x

(c) (α → β) → (β → γ) → (α → γ)
Answer: λf : α → β. λg: β → γ. λx: α. g (f x)
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4. Combinator Calculi (20 points)
Recall the following encoding of Boolean values in SKI calculus:

B x y →∗ x if B is true,

B x y →∗ y if B is false.

In HW1, we asked for prefix forms of Boolean functions and and or. In this question, we
consider infix forms of binary Boolean operators in SKI calculus, without changing the
rules for evaluation. For example, the and operator can be implemented as the string
“I (K F )”:

T I (K F )︸ ︷︷ ︸
“and”

T →∗ T F I (K F ) T →∗ F,

T I (K F ) F →∗ F F I (K F ) F →∗ F.

Note: The infix and defined in this way is not a combinator! In particular, there are no
implied parentheses around I (K F ).
For each of the following functions, give an infix implementation. The entry for and is
already filled in. Recall that a xor b is true if and only if a and b are not the same
Boolean value. In addition to S, K, and I, you may use the T , F , and not combinators.

Function Definition (in C) Infix string
and a && b I (K F )

or a || b

xor a ˆ b

nor !(a || b)

Answer:

Function Definition (in C) Infix string
and a && b I (K F )
or a || b T or (K T ) I

xor a ˆ b not I
nor !(a || b) (K F ) not
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