(CS242 Midterm
Fall 2021

e Please read all instructions (including these) carefully.

e There are 4 questions on the exam, some with multiple parts. You have 90 minutes to
work on the exam.

e The exam is open note. You may use laptops, phones and e-readers to read electronic
notes, but not for computation or access to the internet for any reason.

e Please write your answers in the space provided on the exam, and clearly mark your
solutions. Do not write on the back of exam pages or other pages.

e Solutions will be graded on correctness and clarity. Each problem has a relatively simple
and straightforward solution. You may get as few as 0 points for a question if your solution
is far more complicated than necessary. Partial solutions will be graded for partial credit.

NAME:

In accordance with both the letter and spirit of the Honor Code, I have neither given nor
received assistance on this examination.

SIGNATURE:

’ Problem ‘ Max points ‘ Points ‘

1 25
2 10
3 30
4 25

| TOTAL | 90 | |




1. Lambda Calculus (25 points)
Recall the following definitions of booleans, integers, and lists from homework 1:

def T = Az. \y. z;

def F = Ax. \y. y;

def not=Xb. bF T

def inc = An. Af. Az. f (n f z);

def 0 = \f. A\z. x;

def cons = Ah. At. Af. Az, f h (t f x);
def nil = \f. A\x. x;

For the following problems, feel free to define and use helper functions.

(a) Write a lambda expression xor that returns the xor of two booleans. Recall that xor
is true iff exactly one of its two boolean arguments is true.

def xor = Aa. \b.

def xor = Aa. Ab. a (not b) b;

(b) Write a lambda expression num_odds that returns the number of odd integers in a
list of integers.

def num_odds = \l.

def is_.odd = An. n not F;
def num_odds = Al. [ (An. Ac.(is_odd n) (inc ¢) ¢) 0;



2. Object Calculus (10 points)
Consider the following object calculus, extended with some constants. Objects are defined
by
o=1[..,1; : ((x) e...]

where the method bodies e; can use variables x, integers 7, sums of integers e 4+ ¢’, method
selections e.l, and method overrides e.l <= ((y) €’. Consider the following object calculus
program:

o=[a:((x)0, b: ]

Fill in the b field with a method that, when invoked, returns an object of the same kind
with the a field changed to a method that returns the old value of a incremented by 1.
For example, the expression 0.b.b.b.b.b.a should evaluate to 5 (that is the number 5,
not an encoding of 5).

o=[a:((2)0, b:((y)y.a <=((z)y.a+ 1]



3. Simple Types (30 points)

In this problem we extend the Simply Typed Lambda Calculus (STLC) with some new

features. As a reminder, STLC has no polymorphic (quantified) types. The STLC’s
syntax is:

Constants ¢ == 0]1]...
Ezpressions e == z|lr:Tel|eelc
Types T == int|7—=7]|«

Recall that the type checking rules I' - e : 7 for the STLC are:

Dx:7he:7 Fke 77— 71 Fkey:T
F'kc:int Tyo:rthka:7 ThHXM:Te:T— 7 Feey: 7

(a) We add product types to the STLC. Product types provide a way to construct and
use pairs by packing two values together into a single value. Here we are introducing
pairs as a new primitive type instead of using an encoding in the lambda calculus
itself. Pairs are formed by the constructor (e, es), and are eliminated through the
accessors .| and .r. For example (3,4).r — 4 and (3,4).1 — 3.

A pair of expressions (e, e5) has type 71 X 7 if €1 : 71 and ey : /5. We extend the
syntax of the STLC as follows:

Ezxpressions e == ...|({eye)|el]|er
Types T == ...|TXT

Fill in the typing rules for pairs:

['F (eq,e9) :

['Fel:

['Fe.r:




I'He :m I'Fes:mm ThRe:mxmn Tle:rmxmn

L'k (e, e9) i1 X Ty I'Fel:n I'Fer:m

(b) Consider the following approach to adding pairs to the STLC by using an encoding
instead of adding them as primitives to the language:

let pair = A x. A\y. A\f. fxy
let dotl = Ap. p (Az. \y. x)
let dotr = Ap. p (A\z. \y. y)
let p = pair 0 (Af. f)

let x = dotl p

let y = dotr p

Is this program well typed? If so, provide the types of pair, dotl and dotr. If not,
explain why the program cannot be typed.

The program is not well-typed, because the third argument to pair cannot be both
int —» (¢ — a) — int and int —» (0@ — a) = (@ — ).



4. Combinator Calculi (25 points)

(a) Show that the I combinator in the SKI calculus isn’t needed: Write a combinator
using only S and K that implements I. There is a solution that uses three combinators.
SKK

(b) Consider the following combinator language:

o (r1,...,x,) is a list of length n

o £01d [y (21, 20) = f a1 (f @2 ((f 20 y).rr)

e cons Ty (T1,...2Ty) = (To, X1, ..., Tp)

e () is the empty list, so we don’t need a separate empty list constructor

Note that fold performs a reduction starting from the right end of the list using y
as the initial value. In the following problems, you may use fold, cons and lambda
expressions (including helper function definitions if you like) in your solution, but
you may not use any form of iteration or recursion other than fold.

i. Write a function append that appends an element x to the right end of a list [.
append x | = fold cons (z) I

ii. Using append, write a function reverse that reverses a list [.
reverse | = fold append () [



