Lecture 9: RLHF and Guest Lecture on DPO

Emma Brunskill

CS234 Reinforcement Learning.

Spring 2024

Image: A marked black

포카 포

- In class on Wednesday
- \bullet You are allowed 1 side of 1 8.5" \times 11" sheet of notes
- All material through today's lecture (Monday) is eligible for the exam
- See Ed post for additional details and past related midterm/quizzes
- Good luck!

< 口 > < 同 >

Select all that are true

- The Bradley Terry model expresses the probability that someone will select option b_i over b_j
- Using preference tuples and the Bradley Terry model, one can learn a model of the reward function
- The resulting reward function can be shifted by any constant and will not change the resulting preferences
- The resulting reward function can be multiplied by any constant and will not change the resulting preferences
- In RLHF we update the reward model after each PPO roll out

(日)

Select all that are true

- The Bradley Terry model expresses the probability that someone will select option b_i over b_j
- Using preference tuples and the Bradley Terry model, one can learn a model of the reward function
- The resulting reward function can be shifted by any constant and will not change the resulting preferences
- The resulting reward function can be multiplied by any constant and will not change the resulting preferences
- In RLHF we update the reward model after each PPO roll out

- Last time: Imitation Learning (Max Entropy IRL) and RLHF
- This time: RLHF and Direct Preference Optimization (best paper runner up at top ML conference) guest lecture
- Next time: Midterm

Image: Image:

- RLHF for LLM
- Direct Preference Optimization

Ξ.

- Often easier for people to make than hand writing a reward function
- Often easier than providing scalar reward (how much do you like this ad?)

< □ > < 同 >

- Consider k-armed bandits¹: K actions $b_1, b_2, \ldots b_k$. No state/context.
- Assume a human makes noisy pairwise comparisons, where the probability she prefers $b_i \succ b_j$ is

$$P(b_i \succ b_j) = \frac{\exp\left(r(b_i)\right)}{\exp\left(r(b_i)\right) + \exp\left(r(b_j)\right)} = p_{ij}$$
(1)

- Assume have N tuples of form (b_i, b_j, μ) where $\mu(1) = 1$ if the human marked $b_i \succ b_j$, $\mu(1) = 0.5$ if the human marked $b_i = b_j$, else 0 if $b_j \succ b_i$
- Maximize likelihood with cross entropy

$$loss = -\sum_{(b_i, b_j, \mu) \in \mathcal{D}} \mu(1) \log P(b_i \succ b_j) + \mu(2) \log P(b_j \succ b_j)$$
(2)

- Use learned reward model, and do PPO with this model
- See prior lecture for notes on doing this over trajectories

¹We will see more on bandits later in the course

- How is this used in ChatGPT?
- Next set of slides are from part of Tatsu Hashimoto's Lecture 11 in CS224N

High-level instantiation: 'RLHF' pipeline

(日) (同) (日) (日)

- First step: instruction tuning!
- Second + third steps: maximize reward (but how??)

How do we model human preferences?

- Problem 2: human judgments are noisy and miscalibrated!
- Solution: instead of asking for direct ratings, ask for pairwise comparisons, which can be more reliable [Phelps et al., 2015; Clark et al., 2018]

Make sure your reward model works first!

Evaluate RM on predicting outcome of held-out human judgments

(日) (四) (三) (三) (三)

RLHF: Putting it all together [Christiano et al., 2017; Stiennon et al., 2020]

- Finally, we have everything we need:
 - A pretrained (possibly instruction-finetuned) LM $p^{PT}(s)$
 - A reward model $RM_{\phi}(s)$ that produces scalar rewards for LM outputs, trained on a dataset of human comparisons
 - A method for optimizing LM parameters towards an arbitrary reward function.
- Now to do RLHF:
 - Initialize a copy of the model $p_{\theta}^{RL}(s)$, with parameters θ we would like to optimize
 - Optimize the following reward with RL:

$$R(s) = RM_{\phi}(s) - \beta \log \left(\frac{p_{\theta}^{PD}(s)}{p^{PT}(s)} \right)$$

 $\begin{array}{c} F(s) \\ \hline T(s) \end{array} \end{array} \begin{array}{c} Pay a price when \\ p_{\theta}^{RL}(s) > p^{PT}(s) \end{array}$

<ロ> (四) (四) (三) (三) (三) (三)

This is a penalty which prevents us from diverging too far from the pretrained model. In expectation, it is known as the **Kullback-Leibler (KL)** divergence between $p_{\theta^{L}}^{RL}(s)$ and $p^{PT}(s)$.

RLHF provides gains over pretraining + finetuning

(ロ) (部) (目) (目)

æ

43

InstructGPT: scaling up RLHF to tens of thousands of tasks

Step 2

Collect comparison data, and train a reward model.

A labeler ranks the outputs from best to worst

 \odot landing to a 6 year old

0×0×0=0

Step 3

the dataset

The policy

generates

an output.

calculates a

reward for

the output.

the policy

using PPO.

Optimize a policy against the reward model using reinforcement learning.

3

Controlled comparisons of "RLHF" style algorithms

Method	Simulated win-rate (%)	Human win-rate (%)
GPT-4	79.0 ± 1.4	69.8 ± 1.6
ChatGPT	61.4 ± 1.7	52.9 ± 1.7
PPO	46.8 ± 1.8	55.1 ± 1.7
Best-of-n	45.0 ± 1.7	50.7 ± 1.8
Expert Iteration	41.9 ± 1.7	45.7 ± 1.7
SFT 52k (Alpaca 7B)	39.2 ± 1.7	40.7 ± 1.7
SFT 10k	36.7 ± 1.7	44.3 ± 1.7
Binary FeedME	36.6 ± 1.7	37.9 ± 1.7
Quark	35.6 ± 1.7	-
Binary Reward Conditioning	32.4 ± 1.6	-
Davinci001	24.4 ± 1.5	32.5 ± 1.6
LLaMA 7B	11.3 ± 1.1	6.5 ± 0.9

- Many works study RLHF behaviors using GPT-4 feedback (Simulated) as a surrogate for Human feedback.
- PPO (method in InstructGPT) does work
- Simple baselines (Best-of-n, Training on 'good' outputs) works well too

[Dubois et al 2023]

(日) (圖) (문) (문) (문)

- RLHF for LLM
- Direct Preference Optimization

Ξ.

- Learning and making decisions from human preferences is a rich area intersecting social choice, computational economics and AI
- New course at Stanford on this topic: Koyejo's CS329H: Machine Learning from Human Preferences

Image: Image:

- Last time: Imitation Learning (Max Entropy IRL) and RLHF
- This time: RLHF and Direct Preference Optimization (best paper runner up at top ML conference) guest lecture
- Next time: Midterm

Image: A matrix and a matrix