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Refresh Your Understanding L8N1

Select all that are true

(a) Maximizing a lower bound on the performance gap between a new policy and and
old policy can ensure monotonic convergence

(b) Behavior cloning requires knowing the dynamics model

(c) DAGGER uses demonstrations from experts but no further interactions

(d) Not sure
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Refresh Your Understanding L8N1 Solutions

Select all that are true

(a) Maximizing a lower bound on the performance gap between a new policy and and
old policy can ensure monotonic convergence

(b) Behavior cloning requires knowing the dynamics model

(c) DAGGER uses demonstrations from experts but no further interactions

(d) Not sure
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How Can RL Enable This?
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Class Structure

Last time: Policy search continued and Imitation Learning

This time: Imitation Learning and RLHF

Next time: Author of Direct Preference Optimization (best paper runner up at top
ML conference) guest lecture
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Today

Imitation Learning
Max entropy inverse RL

Human feedback
RLHF
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Learning from Demonstrations

Expert provides a set of demonstration trajectories: sequences of states and
actions

Imitation learning is useful when it is easier for the expert to demonstrate the
desired behavior rather than:

Specifying a reward that would generate such behavior,
Specifying the desired policy directly
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Problem Setup

Input:
State space, action space
Transition model P(s′ | s, a) (sometimes)
No reward function R
Set of one or more expert’s demonstrations (s0, a0, s1, s0, . . .)
(actions drawn from expert’s policy π∗)

Behavioral Cloning:
Can we directly learn the expert’s policy using supervised learning?

Inverse RL:
Can we recover R?

Apprenticeship learning via Inverse RL:
Can we use R to generate a good policy?
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Recall: Feature Matching

Want to find a reward function such that the expert policy outperforms other
policies.

For a policy π to be guaranteed to perform as well as the expert policy π∗, sufficient
if its discounted summed feature expectations match the expert’s policy [Abbeel &
Ng, 2004].

More precisely, if
∥µ(π)− µ(π∗)∥1 ≤ ϵ

then for all w with ∥w∥∞ ≤ 1 (uses Holder’s inequality):

|wTµ(π)− wTµ(π∗)| ≤ ϵ

where here µ is used to represent the features experienced under π
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Recall: Ambiguity

There is an infinite number of reward functions with the same optimal policy.

There are infinitely many stochastic policies that can match feature counts

Which one should be chosen?
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Learning from Demonstration / Imitation Learning Pointers

Many different approaches

Two of the key papers are:
Maximumum Entropy Inverse Reinforcement Learning (Ziebart et al. AAAI 2008)
Generative adversarial imitation learning (Ho and Ermon, NeurIPS 2016)
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Max Entropy Inverse RL. Ziebart et al. 2008. Note: Much of this
presentation follows the slides from Katerina Fragkiadaki’s Deep

Reinforcement Learning and Control Lecture on Maximum Entropy
Inverse RL.
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Principle of Maximum Entropy

Recall that entropy of a distribution p(s) is −
∑

s′ p(s = s ′) log p(s = s ′)

Principle of max entropy: The probability distribution which best represents the
current state of knowledge is the one with the largest entropy, given the constraints
of precisely stated prior data.

Intuitively: consider all probability distributions consistent with observed data, and
select the probability distribution with the maximum entropy.
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Principle of Maximum Entropy for IRL

Recall that entropy of a distribution p(s) is −
∑

s′ p(s = s ′) log p(s = s ′)

Principle of max entropy: The probability distribution which best represents the
current state of knowledge is the one with the largest entropy, given the constraints
of precisely stated prior data.

Intuitively: consider all probability distributions consistent with observed data, and
select the probability distribution with the maximum entropy.

In the linear reward case, this is equivalent to specifying the weights w that yield a
policy with the max entropy constrained to matching the feature expectations:

max
P

−
∑
τ

P(τ) logP(τ)s.t.
∑
τ

P(τ)µ(τ) =
1

|D|
∑
i∈D

µ(τi )
∑
τ

P(τ) = 1

(1)

where µ(τ) are the features for trajectory τ and D is the observed expert data

Ziebart et al., 2008
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Matching Rewards

In the linear reward case, this is equivalent to specifying the weights w that yield a
policy with the max entropy constrained to matching the feature expectations:

max
P

−
∑
τ

P(τ) logP(τ)s.t.
∑
τ

P(τ)µ(τ) =
1

|D|
∑
i∈D

µ(τi )
∑
τ

P(τ) = 1

(2)

where µ(τ) are the features for trajectory τ and D is the observed expert data

In general, would like to find a policy π that induces a distribution over trajectories
p(τ) which has the same expected reward as the expert’s demonstrations P̂(τ) given
a reward function rϕ

max
p(τ)

−
∑
τ

p(τ) log p(τ) s.t.
∑
τ

p(τ)rϕ(τ) =
∑
τ

P̂(τ)rϕ(τ)
∑
τ

p(τ) = 1

(3)

Ziebart et al., 2008
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Matching Rewards to Learning Policies

In the linear reward case, this is equivalent to specifying the weights w that yield a
policy with the max entropy constrained to matching the feature expectations:

max
P

−
∑
τ

P(τ) logP(τ)s.t.
∑
τ

P(τ)µ(τ) =
1

|D|
∑
i∈D

µ(τi )
∑
τ

P(τ) = 1

(4)

where µ(τ) are the features for trajectory τ and D is the observed expert data

In general, would like to find a policy π that induces a distribution over trajectories
p(τ) which has the same expected reward as the expert’s demonstrations P̂(τ) given
a reward function rϕ

max
p(τ)

−
∑
τ

p(τ) log p(τ) s.t.
∑
τ

p(τ)rϕ(τ) =
∑
τ

P̂(τ)rϕ(τ)
∑
τ

p(τ) = 1

(5)

To do so, will alternate between computing a reward function, using that reward
function to learn an optimal policy, and then updating the trajectory / state
frequencies needed to update the reward function

Note: in original maximum entropy inverse RL paper, assumed dynamics / reward
model is known

Ziebart et al., 2008
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From Maximum Entropy to Probability over Trajectories
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Maximizing Entropy Over τ ≡ Maximize Likelihood of Observed Data
Under Max Entropy (Exponential Family) Distribution (Jaynes 1957)
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Maximize (over rϕ)) Likelihood of Observed Data Under Max Entropy
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From Trajectories to States
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State Densities
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Maximum entropy inverse RL

Note: Assuming known dynamics model and linear rewards

1 Input: expert demonstrations D
2 Initialize rϕ

3 Compute optimal π(a|s) given rϕ e.g. with value iteration)

4 Compute state visitation frequencies p(s|[ϕ,T )

5 Compute gradient on reward model

∇J(ϕ) = (6)

6 Update ϕ with one gradient step

7 Go to step 3
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Check Your Understanding: L8N2 Maximum entropy inverse RL

Note: Assuming known dynamics model and linear rewards

1 Input: expert demonstrations D
2 Initialize rϕ

3 Compute optimal π(a|s) given rϕ e.g. with value iteration)

4 Compute state visitation frequencies p(s(ϕ,T )

5 Compute gradient on reward model

∇J(ϕ) = (7)

6 Update ϕ with one gradient step

7 Go to step 3

What steps in the above algorithm rely on knowing the dynamics model? (select all)

(1) Computing the optimal policy

(2) Computing the state visitation frequencies

(3) Computing the gradient

(4) No steps required it

(5) Not sure
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Check Your Understanding: L8N2 Maximum entropy inverse RL Solutions

Note: Assuming known dynamics model and linear rewards

1 Input: expert demonstrations D
2 Initialize rϕ
3 Compute optimal π(a|s) given rϕ e.g. with value iteration)
4 Compute state visitation frequencies p(s(ϕ,T )
5 Compute gradient on reward model

∇J(ϕ) = (8)

6 Update ϕ with one gradient step
7 Go to step 3

What steps in the above algorithm rely on knowing the dynamics model? (select all)

(1) Computing the optimal policy

(2) Computing the state visitation frequencies

(3) Computing the gradient

(4) No steps required it

(5) Not sure
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Max Entropy IRL Summary

Max entropy approach has been hugely influential

Initial formulation (Ziebart et al) using linear rewards and assumed dynamics model
is known

Check your understanding: was this needed in behavioral cloning?

Finn et al. 2016 (Guided cost learning: Deep inverse optimal control via policy
optimization) showed how to use general reward/cost functions and removed the
need to know the dynamics model
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Imitation Learning Summary

Imitation learning can greatly reduce the amount of data need to learn a good policy

Challenges remain and one exciting area is combining inverse RL / learning from
demonstration and online reinforcement learning

For a look into some of the theory between imitation learning and RL, see Sun,
Venkatraman, Gordon, Boots, Bagnell (ICML 2017)

Emma Brunskill (CS234 Reinforcement Learning. ) Lecture 8: Imitation Learning and RLHF Spring 2024 26 / 48



Imitation learning: What You Should Know

Define behavior cloning and how it differs from reinforcement learning

Understand principle of maximum entropy, the resulting distribution over
trajectories, and how this can be used to learn a reward function and fit a policy
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Human Feedback and Reinforcement Learning from Human Preferences
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Human Input to Train RL Agents

There are many ways for humans to help train RL agents

This is relevant if we want RL agents that can match human performance and/or
human values
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Training a Robot Through Human and Environmental Feedback

Teachable robots: Understanding human teaching behavior to build more effective robot learners. AL
Thomaz, C Breazeal. Artificial Intelligence 2008
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Learning a Reward Model from Human Feedback While Training an Agent

Interactively shaping agents via human reinforcement: The TAMER framework. W Knox, P Stone. 2008.
ICKC
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Human Input for Training and Aligning RL Policies

Human Effort

DAGGER/ Constant Teaching Demonstrations Only
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Human Input for Training and Aligning RL Policies: Sweet Spot?

Human Effort

DAGGER/ Constant Teaching Demonstrations OnlyPairwise Labels
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Comparing Recommendation Ranking Systems

Slide from Yisong Yue
http://www.yisongyue.com/courses/cs159/lectures/dueling_bandits_lecture.pdf
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Active Learning of Preferences for Human Robot Interaction

Active preference-based learning of reward functions. D Sadigh, AD Dragan, S Sastry, SA Seshia. RSS
2017
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Pairwise Comparisons

Often easier for people to make than hand writing a reward function

Often easier than providing scalar reward (how much do you like this ad?)
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Bradley-Terry Model (1952)

Already saw with no other assumptions, the latent reward model is not unique

Now focus on a particular structural model

First consider simpler setting of k-armed bandits1: K actions b1, b2, . . . bk . No
state/context.

Assume a human makes noisy pairwise comparisons, where the probability she
prefers bi ≻ bj is

P(bi ≻ bj) =
exp (r(bi ))

exp (r(bi )) + exp (r(bj))
= pij (9)

Transitive: pik is determined from pij and pjk

1We will see more on bandits later in the course
See: The K -armed dueling bandits problem. Y Yue, J Broder, R Kleinberg and T. Joachims. Journal of

Computer and System Sciences. 2012.
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Definitions

Condorcet Winner

An item bi is a Condorcet winner if for every other item bj , P(bi ≻ bj) > 0.5.

Copeland Winner

An item bi is a Copeland winner if it has the highest number of pairwise victories against
all other items. The score for an item is calculated as the number of items it beats minus
the number of items it loses to.

Borda Winner

An item bi is a Borda winner if it maximizes the expected score, where the score against
item bj is 1 if bi ≻ bj , (P(bi ≻ bj) > 0.5) 0.5 if bi = bj , and 0 if bi ≺ Bj .

Historically algorithms for k-armed or dueling (k=2) bandits focused on finding a
copeland winner.
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Preference learning
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Fitting the Parameters of a Bradley-Terry Model

First consider k-armed bandits2: K actions b1, b2, . . . bk . No state/context.

Assume a human makes noisy pairwise comparisons, where the probability she
prefers bi ≻ bj is

P(bi ≻ bj) =
exp (r(bi ))

exp (r(bi )) + exp (r(bj))
= pij (10)

2We will see more on bandits later in the course
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Fitting the Parameters of a Bradley-Terry Model

First consider k-armed bandits3: K actions b1, b2, . . . bk . No state/context.

Assume a human makes noisy pairwise comparisons, where the probability she
prefers bi ≻ bj is

P(bi ≻ bj) =
exp (r(bi ))

exp (r(bi )) + exp (r(bj))
= pij (11)

Assume have N tuples of form (bi , bj , µ) where µ(1) = 1 if the human marked
bi ≻ bj , µ(1) = 0.5 if the human marked bi = bj , else 0 if bj ≻ bi

Maximize likelihood with cross entropy

loss = −
∑

(bi ,bj ,µ)∈D

µ(1) logP(bi ≻ bj) + µ(2) logP(bj ≻ bj) (12)

3We will see more on bandits later in the course
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Preference to Reward Modeling for RL

Can also do this for trajectories

Consider two trajectories, τ 1(s0, a7, s14, . . .) and τ 2(s0, a6, s12, . . .)

Let R1 =
∑T−1

i=0 r 1i be the (latent, unobserved) sum of rewards for trajectory τ 1 and
similarly for R2.

Define the probability that a human prefers τ 1 ≻ τ 2 as

P̂
[
τ 1 ≻ τ 2

]
=

exp
∑t−1

i=0 r 1i

exp
∑t−1

i=0 r 1i + exp
∑t−1

i=0 r 2i
, (13)
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Preference to Reward Modeling for RL

Can also do this for trajectories

Consider two trajectories, τ 1(s0, a7, s14, . . .) and τ 2(s0, a6, s12, . . .)

Let R1 =
∑T−1

i=0 r 1i be the (latent, unobserved) sum of rewards for trajectory τ 1 and
similarly for R2.

Define the probability that a human prefers τ 1 ≻ τ 2 as

P̂
[
τ 1 ≻ τ 2

]
=

exp
∑t−1

i=0 r 1i

exp
∑t−1

i=0 r 1i + exp
∑t−1

i=0 r 2i
, (14)

Use learned reward model, and do PPO with this model
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Reinforcement Learning from Human Feedback

Learning to backflip

”needed 900 bits of feedback from a human evaluator to learn to backflip”

https://player.vimeo.com/video/754042470?h=e64a40690d&badge=
0&autopause=0&player_id=0&app_id=58479

Christiano et al. 2017. Deep RL from Human Preferences https://arxiv.org/pdf/1706.03741.pdf
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From Backflips to ChatGPT. 4

4Slides from part of Tatsu Hashimoto’s Lecture 11 in CS224N
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From Backflips to ChatGPT

Next set of slides are from part of Tatsu Hashimoto’s Lecture 11 in CS224N

Emma Brunskill (CS234 Reinforcement Learning. ) Lecture 8: Imitation Learning and RLHF Spring 2024 46 / 48



High-level instantiation: ‘RLHF’ pipeline

• First step: instruction tuning!
• Second + third steps: maximize reward (but how??)



How do we model human preferences?

40

• Problem 2: human judgments are noisy and miscalibrated!
• Solution: instead of asking for direct ratings, ask for pairwise comparisons, which can 

be more reliable [Phelps et al., 2015; Clark et al., 2018] 

An earthquake hit 
San Francisco. 
There was minor 
property damage, 
but no injuries.

The Bay Area has 
good weather but is 
prone to 
earthquakes and 
wildfires.

!! !"

A 4.2 magnitude 
earthquake hit
San Francisco, 
resulting in 
massive damage.

!#

> >

Reward Model ("9.)

The Bay Area … ... wildfires

1.2

:/0 ; = −% "#,"$ ~2 log	=("9. !3 − "9.(!4))
“winning” 
sample

“losing” 
sample

!3 should score
higher than !4 

Bradley-Terry [1952] paired comparison model



Make sure your reward model works first!

Data

Evaluate RM on predicting outcome of held-out human judgments

[Stiennon et al., 2020]

Large enough RM 
trained on enough 
data approaching 
single human perf
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This is a penalty which prevents us from diverging too far from 
the pretrained model. In expectation, it is known as the 
Kullback-Leibler (KL) divergence between !!"#(#) and !$% # .

RLHF: Putting it all together [Christiano et al., 2017; Stiennon et al., 2020]

Pay a price when 
0*/5 ! > 067 !

• Finally, we have everything we need:
• A pretrained (possibly instruction-finetuned) LM 067(!) 
• A reward model	"9.(!) that produces scalar rewards for LM outputs, trained on a 

dataset of human comparisons
• A method for optimizing LM parameters towards an arbitrary reward function.

• Now to do RLHF:
• Initialize a copy of the model 0*/5(!) , with parameters ) we would like to optimize
• Optimize the following reward with RL:

" ! = "9.(!) − ?	log
0*/5(!)
067(!)



RLHF provides gains over pretraining + finetuning

[Stiennon et al., 2020]

/$%(!) 
/&'%(!) 

/()(!) 
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InstructGPT: scaling up RLHF to tens of thousands of tasks

[Ouyang et al., 2022]

30k 
tasks!
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InstructGPT: scaling up RLHF to tens of thousands of tasks

[Ouyang et al., 2022]

Tasks collected from labelers:
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InstructGPT
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InstructGPT
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ChatGPT: Instruction Finetuning + RLHF for dialog agents

48

Note: OpenAI (and similar 
companies) are keeping 
more details secret about 
ChatGPT training 
(including data, training 
parameters, model size)—
perhaps to keep a 
competitive edge…

https://openai.com/blog/chatgpt/

(Instruction finetuning!)



ChatGPT: Instruction Finetuning + RLHF for dialog agents
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Note: OpenAI (and similar 
companies) are keeping 
more details secret about 
ChatGPT training 
(including data, training 
parameters, model size)—
perhaps to keep a 
competitive edge…

https://openai.com/blog/chatgpt/

(RLHF!)



ChatGPT: Instruction Finetuning + RLHF for dialog agents
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Controlled comparisons of “RLHF” style algorithms

• Many works study RLHF behaviors using GPT-4 feedback (Simulated) as a surrogate for 
Human feedback. 

• PPO (method in InstructGPT) does work
• Simple baselines (Best-of-n, Training on ‘good’ outputs) works well too [Dubois et al 2023]



RLHF behaviors – clear stylistic changes

• Significantly more detailed, nicer/clearer list like formatting

[Dubois et al 2023]



" ! = "9.(!) − ?	log
0*/5(!)
067(!)

56

Limitations of RL + Reward Modeling

• Human preferences are unreliable!
• ”Reward hacking” is a common 

problem in RL
• Chatbots are rewarded to 

produce responses that seem 
authoritative and helpful, 
regardless of truth

• This can result in making up facts 
+ hallucinations

• Models of human preferences are 
even more unreliable!

Reward model over-optimization

[Stiennon et al., 2020]



Where does the labels come from?

• RLHF labels are often obtained from overseas, low-wage workers



Where does the label come from?

• We also need to be quite careful about how annotator biases might creep into LMs

‘Base’ language models 

[Santurkar+ 2023, OpinionQA]



Learning More

Learning and making decisions from human preferences is a rich area intersecting
social choice, computational economics and AI

New course at Stanford on this topic: Koyejo’s CS329H: Machine Learning from
Human Preferences
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Class Structure

Last time: Policy search continued and Imitation Learning

This time: Imitation Learning and RLHF

Next time: Author of Direct Preference Optimization (best paper runner up at top
ML conference) guest lecture
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