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Refresh Your Understanding L8N1

Select all that are true

@ Maximizing a lower bound on the performance gap between a new policy and and
old policy can ensure monotonic convergence

@ Behavior cloning requires knowing the dynamics model
@ DAGGER uses demonstrations from experts but no further interactions
Q

Not sure
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Refresh Your Understanding L8N1 Solutions

Select all that are true

@ Maximizing a lower bound on the performance gap between a new policy and and
old policy can ensure monotonic convergence

@ Behavior cloning requires knowing the dynamics model
@ DAGGER uses demonstrations from experts but no further interactions
@

Not sure
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How Can RL Enable This?

You

Please write me a program to demonstration how RLHF works. Please be brief in your
explanations and only say 1-2 sentences before you show me the code.

© ChatGPT
Reinforcement Learning from Human Feedback (RLHF) trains a model to perform tasks based on

human-derived feedback. Here's a simplified Python program that demonstrates RLHF using a
scenario where an Al chooses responses in a conversation.

python
numpy as np
actions = [
q_table = np.zeros(len(actions))
(action
feedback = {
feedback[action]

learning_rate =

discount_factor =

episode in range(100)

action_index = np.random.choice(len(actions))
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Class Structure

o Last time: Policy search continued and Imitation Learning
@ This time: Imitation Learning and RLHF

o Next time: Author of Direct Preference Optimization (best paper runner up at top
ML conference) guest lecture
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Today

o Imitation Learning

o Max entropy inverse RL
@ Human feedback

o RLHF
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Learning from Demonstrations

@ Expert provides a set of demonstration trajectories: sequences of states and
actions

o Imitation learning is useful when it is easier for the expert to demonstrate the
desired behavior rather than:
e Specifying a reward that would generate such behavior,
o Specifying the desired policy directly

Emma Brunskill (CS234 Reinforcement Learning. ) Lecture 8: ion Learning and RLHF Spring 2024



Problem Setup

o Input:

State space, action space

Transition model P(s’ | s, a) (sometimes)

No reward function R

Set of one or more expert’s demonstrations (sp, ag, s1, S0, - - -)
(actions drawn from expert’s policy 7*)

@ Behavioral Cloning:
o Can we directly learn the expert’s policy using supervised learning?

@ Inverse RL:
o Can we recover R?
@ Apprenticeship learning via Inverse RL:

o Can we use R to generate a good policy?
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Recall: Feature Matching

@ Want to find a reward function such that the expert policy outperforms other
policies.

@ For a policy 7 to be guaranteed to perform as well as the expert policy 7*, sufficient
if its discounted summed feature expectations match the expert’s policy [Abbeel &
Ng, 2004].

@ More precisely, if
() = p(m)a < e

then for all w with ||w|ls < 1 (uses Holder's inequality):
wp(m) —wlp(n") < e

@ where here p is used to represent the features experienced under 7
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Recall: Ambiguity

@ There is an infinite number of reward functions with the same optimal policy.
@ There are infinitely many stochastic policies that can match feature counts

@ Which one should be chosen?
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Learning from Demonstration / Imitation Learning Pointers

o Many different approaches
o Two of the key papers are:

e Maximumum Entropy Inverse Reinforcement Learning (Ziebart et al. AAAI 2008)
e Generative adversarial imitation learning (Ho and Ermon, NeurlPS 2016)
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Max Entropy Inverse RL. Ziebart et al. 2008. Note: Much of this
presentation follows the slides from Katerina Fragkiadaki's Deep

Reinforcement Learning and Control Lecture on Maximum Entropy
Inverse RL.
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Principle of Maximum Entropy

@ Recall that entropy of a distribution p(s) is —>_, p(s = s") log p(s = s')

@ Principle of max entropy: The probability distribution which best represents the
current state of knowledge is the one with the largest entropy, given the constraints
of precisely stated prior data.

@ Intuitively: consider all probability distributions consistent with observed data, and
select the probability distribution with the maximum entropy.

Spring 2024
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Principle of Maximum Entropy for IRL

@ Recall that entropy of a distribution p(s) is — .., p(s = s') log p(s = s’)

@ Principle of max entropy: The probability distribution which best represents the
current state of knowledge is the one with the largest entropy, given the constraints
of precisely stated prior data.

o Intuitively: consider all probability distributions consistent with observed data, and
select the probability distribution with the maximum entropy.

@ In the linear reward case, this is equivalent to specifying the weights w that yield a
policy with the max entropy constrained to matching the feature expectations:

mafoP(T)IogP ZP Z,u i) ZP(T):l
|D| i€D T
(1)

@ where p(7) are the features for trajectory 7 and D is the observed expert data

Ziebart et al., 2008
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Matching Rewards

@ In the linear reward case, this is equivalent to specifying the weights w that yield a
policy with the max entropy constrained to matching the feature expectations:

max—ZP(T)IogP ZP |D|Zu7', ZP(T):l
i€eD T
(2)
@ where p(7) are the features for trajectory 7 and D is the observed expert data

@ In general, would like to find a policy 7 that induces a distribution over trajectories
p(7) which has the same expected reward as the expert’'s demonstrations P(7) given
a reward function ry

’;}i?—zp(ﬂ log p(T) s.t Zp T)re(T) = Zﬁ(T)hp(T) ZP(T) =1
’ (3)

T

Ziebart et al., 2008
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Matching Rewards to Learning Policies

@ In the linear reward case, this is equivalent to specifying the weights w that yield a
policy with the max entropy constrained to matching the feature expectations:

mafoP(T)IogP ZP |Z,u7—, ZP(T):l
i€D T
(4)
@ where p(7) are the features for trajectory 7 and D is the observed expert data
@ In general, would like to find a policy 7 that induces a distribution over trajectories

p(7) which has the same expected reward as the expert’s demonstrations P(7) given
a reward function ry

max — p(7)logp(7) s.t p(T)rs(m) = Arr¢7- p(1) =
max = 3op(logp(r) st 3 p(r)re(r) = 3P 3 0p(r)

-
(5)
@ To do so, will alternate between computing a reward function, using that reward
function to learn an optimal policy, and then updating the trajectory / state
frequencies needed to update the reward function

@ Note: in original maximum entropy inverse RL paper, assumed dynamics / reward
model is known

Ziebart et al., 2008
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From Maximum Entropy to Probability over Trajectories
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Maximizing Entropy Over 7 = Maximize Likelihood of Observed Data

Under Max Entropy (Exponential Family) Distribution (Jaynes 1957)
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Maximize (over ry)) Likelihood of Observed Data Under Max Entropy
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From Trajectories to States
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State Densities
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Maximum entropy inverse RL

Note: Assuming known dynamics model and linear rewards

Q
o
(%]
(5]

© ©

Input: expert demonstrations D

Initialize ry

Compute optimal 7(a|s) given ry e.g. with value iteration)
Compute state visitation frequencies p(s|[®, T)

Compute gradient on reward model
VI(¢) = (6)

Update ¢ with one gradient step
Go to step 3
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Check Your Understanding: L8N2 Maximum entropy inverse RL

Note: Assuming known dynamics model and linear rewards

Q
o
(%]
(5]

o
(7]

Input: expert demonstrations D

Initialize ry
Compute optimal 7(als) given ry e.g. with value iteration)
Compute state visitation frequencies p(s(¢, T)
Compute gradient on reward model
VJ(¢) = @)
Update ¢ with one gradient step
Go to step 3

@ What steps in the above algorithm rely on knowing the dynamics model? (select all)

@ (1) Computing the optimal policy

@ (2) Computing the state visitation frequencies

o (4) No steps required it

)

@ (3) Computing the gradient
)
)

@ (5) Not sure
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Check Your Understanding: L8N2 Maximum entropy inverse RL Solutions

Note: Assuming known dynamics model and linear rewards
Input: expert demonstrations D

Initialize ry

Compute optimal 7(als) given ry e.g. with value iteration)
Compute state visitation frequencies p(s(¢, T)

00000

Compute gradient on reward model

Vi(¢) = (8)
Update ¢ with one gradient step
Go to step 3
What steps in the above algorithm rely on knowing the dynamics model? (select all)
1) Computing the optimal policy
2) Computing the state visitation frequencies
3
4) No steps required it
5

e 06060 06 06 ©0

(
(
(
(
(

)
) Computing the gradient
)
)

Not sure
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Max Entropy IRL Summary

@ Max entropy approach has been hugely influential

o Initial formulation (Ziebart et al) using linear rewards and assumed dynamics model
is known
o Check your understanding: was this needed in behavioral cloning?

o Finn et al. 2016 (Guided cost learning: Deep inverse optimal control via policy
optimization) showed how to use general reward/cost functions and removed the
need to know the dynamics model
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Imitation Learning Summary

@ Imitation learning can greatly reduce the amount of data need to learn a good policy

o Challenges remain and one exciting area is combining inverse RL / learning from
demonstration and online reinforcement learning

@ For a look into some of the theory between imitation learning and RL, see Sun,
Venkatraman, Gordon, Boots, Bagnell (ICML 2017)

Spring 2024
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Imitation learning: What You Should Know

o Define behavior cloning and how it differs from reinforcement learning

@ Understand principle of maximum entropy, the resulting distribution over
trajectories, and how this can be used to learn a reward function and fit a policy
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Human Feedback and Reinforcement Learning from Human Preferences
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Human Input to Train RL Agents

@ There are many ways for humans to help train RL agents

@ This is relevant if we want RL agents that can match human performance and/or
human values
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Training a Robot Through Human and Environmental Feedback

Sophie's Kitchen

PICK-UP:Spoon >> -0.04

Teachable robots: Understanding human teaching behavior to build more effective robot learners. AL
Thomaz, C Breazeal. Artificial Intelligence 2008
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Learning a Reward Model from Human Feedback While Training an Agent

Table 1: Results of various Tetris agents.

Method Mean Lines Cleared Games
at Game 3 at Peak | for Peak
TAMER 65.89 65.89 3
RRL-KBR [15] 5 50 120
~ 0 (no learning | 3183 1500

Policy Iteration [2]
until game 100)

~ 0 (no learning 586,103 3000

Genetic Algorithm [5]
until game 500)

~ 0 (no learning 348,895 5000

CE+RL [17]

until game 100)

Interactively shaping agents via human reinforcement: The TAMER framework. W Knox, P Stone. 2008.
ICKC
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Human Input for Training and Aligning RL Policies

DAGGER/ Constant Teaching Demonstrations Only
Human Effort
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Human Input for Training and Aligning RL Policies: Sweet Spot?

DAGGER/ Constant Teaching Pairwise Labels Demonstrations Only

Human Effort
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RetrIEVAL FUNCTION A

CS 159 Purdue University

web.ics.purdue.edu/~cs159/ v Purdue University ~

Aug 16, 2012 - CS 159 introduces the tools of software development that have become
essential for creative problem solving in Engineering. Educators and

CS159: Introduction to Parallel Processing | People | San Jo...

www.sjsu.edu> ... » Chun, Robert K » Courses v San Jose State University
Jan 20, 2015 - Description. A combination hardware architecture and software
development class focused on multi-threaded, parallel processing algorithms

CS 159: Introduction to Parallel Processing - Info.sjsu.edu
info.sjsu.edu> ... » Courses v San Jose State University ~

CS 159. Introduction to Parallel Processing. Description Major paralel architectures:
shared memory, distributed memory, SIMD, MIMD. Parallel algorithms:

Guy falls asleep in CS159 lab Purdue - YouTube
https://www.youtube.com/watch?v=vVciOgZwlLag
Mar 24, 2011 - Uploaded by james brand
Guy falls asleep in our 7:30 am lab so we take his phone turn the
volume up to full and call him.

CS 159: Advanced Topics in Machine Learning - Yisong Yue
www.yisongyue.com/courses/cs159/ v

€S 159: Advanced Topics in Machine Leaming (Spring 2016). Course Description. This
course will cover a mixture of the following topics: Online Learning

CS159: Introduction to Computational Complexity
cs.brown.edu/courses/cs159/home.html + Brown University

Home | Course Info | Assignments | Syllabus And Lectures | Staff and Hours | LaTeX. An
early model of parallel computation... Home Courses.

Comparing Recommendation Ranking Systems

ReTrIEVAL FUNCTION B

Guy falls asleep in CS159 lab Purdue - YouTube
https://www.youtube com/watch?v=vVciOgZwLag
Mar 24, 2011 - Uploaded by james brand
Guy falls asleep in our 7:30 am lab 50 we take his phone turn the
volume up to full and call him.

CS 159 Purdue University

web.ics.purdue.edu/~cs159/ v Purdue University

Aug 16, 2012 - CS 159 introduces the tools of software development that have become
essential for creative problem solving in Engineering. Educators and ..

CS159: Introduction to Parallel Processing | People | San Jo.
www.sjsu.edu> ...» Chun, Robert K» Courses v San Jose State University
Jan 20, 2015 - Description. A combination hardware architecture and software
development class focused on multi-threaded, parallel processing algorithms

CS 159: Introduction to Parallel Processing - Info.sjsu.edu
info.sjsu.edu> ...» Courses v San Jose State University

CS 159. Introduction to Parallel Processing. Description Major parallel architectures:
shared memory, distributed memory, SIMD, MIMD. Parallel algorithms: .

CS 159: Advanced Topics in Machine Learning - Yisong Yue
'www.yisongyue.com/courses/cs159/ v

CS 159: Advanced Topics in Machine Learning (Spring 2016). Course Description. This,
course will cover a mixture of the following topics: Online Learning

CS159: Introduction to Computational Complexity
cs.brown.edu/courses/cs159/home.html v Brown University

Home | Course Info | Assignments | Syllabus And Lectures | Staff and Hours | LaTeX. Al
early model of parallel computation... Home Courses.

Slide from Yisong Yue
http://www.yisongyue.com/courses/csl59/lectures/duelingbandits_lecturespdf
n Learning and RLHF Spring 2024
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http://www.yisongyue.com/courses/cs159/lectures/dueling_bandits_lecture.pdf

Active Learning of Preferences for Human Robot Interaction

Active preference-based learning of reward functions. D Sadigh, AD Dragan, S Sastry, SA Seshia. RSS
2017 o 5 = = =
Emma Brunskill (CS234 Reinforcement Learning. ) Lecture 8: Imitation Learning and RLHF Spring 2024 35/48




Pairwise Comparisons

@ Often easier for people to make than hand writing a reward function

@ Often easier than providing scalar reward (how much do you like this ad?)

Emma Brunskill (CS234 Reinforcement Learning. ) Lecture 8: tion Learning and RLHF Spring 2024



Bradley-Terry Model (1952)

@ Already saw with no other assumptions, the latent reward model is not unique
@ Now focus on a particular structural model

o First consider simpler setting of k-armed bandits': K actions by, by, . .. bx. No
state/context.

@ Assume a human makes noisy pairwise comparisons, where the probability she
prefers b; = b; is

o eelb)
P b) = o o)) +exp (r(B)) P ©

o Transitive: pix is determined from p; and pj

1We will see more on bandits later in the course
See: The K -armed dueling bandits problem. Y Yue, J Broder, R Kleinberg and T. Joachims. Journal of
Computer and System Sciences. 2012.
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Condorcet Winner

An item b; is a Condorcet winner if for every other item b;, P(b; = b;) > 0.5.

Copeland Winner

An item b; is a Copeland winner if it has the highest number of pairwise victories against
all other items. The score for an item is calculated as the number of items it beats minus
the number of items it loses to.

Borda Winner

An item b; is a Borda winner if it maximizes the expected score, where the score against
item b;j is 1 if b; > bj, (P(b,‘ - bj) > 0.5) 0.5 if by = bj, and 0 if b; < B;.

@ Historically algorithms for k-armed or dueling (k=2) bandits focused on finding a
copeland winner.
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Preference learning
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Fitting the Parameters of a Bradley-Terry Model

o First consider k-armed bandits®>: K actions bi, by, ... bx. No state/context.

@ Assume a human makes noisy pairwise comparisons, where the probability she
prefers b; = b; is

o eplrb))
Plb = b)) = o (B)) T o ()~ P (10)

2We will see more on bandits later in the course
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Fitting the Parameters of a Bradley-Terry Model

First consider k-armed bandits®: K actions by, bz, .. . bx. No state/context.

Assume a human makes noisy pairwise comparisons, where the probability she
prefers b; >~ b; is

o eplrb))
Plbi = b)) = S (B)) T o ()~ P (11)

Assume have N tuples of form (b, bj, 1) where p(1) = 1 if the human marked
bi > bj, (1) = 0.5 if the human marked b; = b;, else 0 if b; > b;

@ Maximize likelihood with cross entropy

loss = — Z (1) log P(b; = bj) + p(2) log P(b; > b;) (12)

(bj,bj,n)ED

3We will see more on bandits later in the course
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Preference to Reward Modeling for RL

Can also do this for trajectories

Consider two trajectories, 7 (so, a7, 514, . . .) and 72(so, as, 512, - - -)

Let R' = 527 ' r! be the (latent, unobserved) sum of rewards for trajectory 7* and

i=

similarly for R-.

o Define the probability that a human prefers 7! > 72 as

t—1 1
F"’ |:’T1 - T2] = tfi(plz:izﬂ L t—1 2 (13)
expY_ iy I Hexpdlisy 1
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Preference to Reward Modeling for RL

Can also do this for trajectories

Consider two trajectories, 7(so, a7, 514, . . .) and 72(so, as, 512, - - -)

Let R' = 527! r! be the (latent, unobserved) sum of rewards for trajectory 7* and

=

similarly for R”.

Define the probability that a human prefers 7' = 72 as

eXpZt 1 1
expzi: rll—i—expzt 1r27

Use learned reward model, and do PPO with this model

p [Tl - 7'2] = (14)
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Reinforcement Learning from Human Feedback

@ Learning to backflip
@ "needed 900 bits of feedback from a human evaluator to learn to backflip”

@ https://player.vimeo.com/video/754042470?h=e64a40690d&badge=
O&autopause=0&player_id=0&app_id=58479

Christiano et al. 2017. Deep RL from Human Preferences https://arxiv.org/pdf/1706.03741.pdf
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https://player.vimeo.com/video/754042470?h=e64a40690d&badge=0&autopause=0&player_id=0&app_id=58479
https://player.vimeo.com/video/754042470?h=e64a40690d&badge=0&autopause=0&player_id=0&app_id=58479
https://arxiv.org/pdf/1706.03741.pdf 

From Backflips to ChatGPT. 4

#Slides from part of Tatsu Hashimoto's Lecture 11 in CS224N
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From Backflips to ChatGPT

@ Next set of slides are from part of Tatsu Hashimoto's Lecture 11 in CS224N
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High-level instantiation: ‘RLHF’ pipeline

Step1 Step2 Step3
Collect demonstration data, Collect comparison data, Optimize a policy against
and train a supervised policy. and train a reward model. the reward model using

reinforcement learning.

Apromptis Aprompt and Anew prompt
sampled from our several model is sampled from
prompt dataset. tput: the dataset.
sampled. °
Alabeler ! e The policy
demonstrates the @ generates
desired output anoutput.
behavior. Soma peole went Y
¢ Alabeler ranks
| the outputs from @
s best to worst
This datais used
tofine-tune GPT-3 ©-0-0-0 The reward model
with supervised } calculates a
[ reward for
earning Z This data is used =) the output,
[EE[E] to train our A v
reward model. \% < The reward Is .
0-6-0-0 used to update k
the policy
using PPO.

e First step: instruction tuning!
¢ Second + third steps: maximize reward (but how??)



How do we model human preferences?

¢ Problem 2: human judgments are noisy and miscalibrated!

¢ Solution: instead of asking for direct ratings, ask for pairwise comparisons, which can
be more reliable [Phelps et al., 2015; Clark et al., 2018]

An earthquake hit A 4.2 magnitude The Bay Area has
San Francisco. earthquake hit good weather but is
There was minor > San Francisco, > prone to
property damage, resulting in earthquakes and
but no injuries. massive damage. wildfires.

51 1.2 S3 Sz

Bradley-Terry [1952] paired comparison model
Jrm(®) = —E (o g1y p[log 5(RMg (s") — RMy(s"))]

“winning”  “losing” s should score
w0 The Bay Area .. .. wildfires sample sample higher than s'




Make sure your reward model works first!

Evaluate RM on predicting outcome of held-out human judgments

Ensemble of humans
50.80
g (Human baseline _________________________ ~~ data approaching
Q075 oo
Q
< 16k
8k
G070 Data
-
®©
o
© 0.65
>
0.60 . -
108 10° 1070
Model size

Large enough RM
trained on enough

single human perf

Stiennon et al., 2020



RLHF: Putting it all together [christiano et al., 2017; Stiennon et al., 2020]

¢ Finally, we have everything we need:
* A pretrained (possibly instruction-finetuned) LM p”7 (s)

* Areward model RM (s) that produces scalar rewards for LM outputs, trained on a
dataset of human comparisons
* A method for optimizing LM parameters towards an arbitrary reward function.
¢ Now to do RLHF:
e Initialize a copy of the model ng (s), with parameters 6 we would like to optimize
* Optimize the following reward with RL:
RL Pay a price when
_ pg (s) yap
R(s) = RMy(s) — B log <pPT(s) pBL(s) > pPT(s)
This is a penalty which prevents us from diverging too far from

the pretrained model. In expectation, it is known as the
a2 Kullback-Leibler (KL) divergence between pf(s) and p*T (s).



RLHF provides gains over pretraining + finetuning

RL

w 0.7 P (s)
o
S
2 0.6}
O
o
b
] e T
s eference summaries
o . —i P (s)
204t | { '
S Supervised learning pPT (s)
:'3 0.3}
o / 1
—
L

0.2; | Pretrain only

1.3B 2.7B 6.78
I Model size
43

12.9B

Stiennon et al., 2020



InstructGPT: scaling up RLHF to tens of thousands of tasks

30k
tasks!

44

Step1

Collect demonstration data,
and train a supervised policy.

A prompt is
sampled from our
prompt dataset.

Explain the moon
landing to a 6 year old

|
\J

Alabeler

demonstrates the @

desired output 7

behavior. Some people went

This data is used
to fine-tune GPT-3
with supervised
learning.

tothe moon.

Step2

Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
sampled.

Alabeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

Explain the moon
landing to a 6 year old

ﬁ_/

Step3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.

»

Wiite a story
about frogs.

Ouyang et al., 2022



InstructGPT: scaling up RLHF to tens of thousands of tasks

Tasks collected from labelers:

* Plain: We simply ask the labelers to come up with an arbitrary task, while ensuring the
tasks had sufficient diversity.

* Few-shot: We ask the labelers to come up with an instruction, and multiple query/response
pairs for that instruction.

» User-based: We had a number of use-cases stated in waitlist applications to the OpenAl
API. We asked labelers to come up with prompts corresponding to these use cases.

Use-case Prompt

Brainstorming List five ideas for how to regain enthusiasm for my
career

Generation Write a short story where a bear goes to the beach,

makes friends with a seal, and then returns home.

a5 Quyang et al., 2022



InstructGPT

46

PROMPT

COMPLETION

Explain the moon landing to a 6 year old in a few sentences.

GPT-3
Explain the theory of gravity to a 6 year old.

Explain the theory of relativity to a 6 year old in a few sentences.
Explain the big bang theory to a 6 year old.

Explain evolution to a 6 year old.

InstructGPT

People went to the moon, and they took pictures of what they saw, and
sent them back to the earth so we could all see them.



InstructGPT

47

PROMPT

COMPLETION

Write a short poem about a wise frog.

GPT-3
Write a short story in which a character has two different names.

Write a short story in which you try to get something back that you
have lost.

Write a short story in which a character has a bad dream.

InstructGPT

The frog is a symbol of wisdom

He knows all the secrets of the world
He is a master of disguise

And a great teacher of life

He is a symbol of transformation

And the bringer of change

He is the frog who has seen it all
And knows the meaning of it all



ChatGPT: Instruction Finetuning + RLHF for dialog agents

ChatGPT: Optimizing

Language Models
for Dialogue

Note: OpenAl (and similar
companies) are keeping
more details secret about
ChatGPT training
(including data, training
parameters, model size)—
perhaps to keep a
competitive edge...
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Methods

We trained this model using Reinforcement Learning from Human
Feedback (RLHF), using the same methods as InstructGPT, but with
slight differences in the data collection setup. We trained an initial
model using supervised fine-tuning: human Al trainers provided
conversations in which they played both sides—the user and an Al
assistant. We gave the trainers access to model-written suggestions to
help them compose their responses. We mixed this new dialogue
dataset with the InstructGPT dataset, which we transformed into a
dialogue format.

(Instruction finetuning!)

https://openai.com/blog/chatgpt/
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ChatGPT: Instruction Finetuning + RLHF for dialog agents

ChatGPT: Optimizing

Language Models
for Dialogue Methods

Note: OpenAl (and similar To create a reward model for reinforcement learning, we needed to collect
companies) are keeping comparison data, which consisted of two or more model responses ranked by
more details secret about quality. To collect this data, we took conversations that Al trainers had with
ChatGPT training the chatbot. We randomly selected a model-written message, sampled several
(including data, training alternative completions, and had Al trainers rank them. Using these reward
parameters, model size)— models, we can fine-tune the model using Proximal Policy Optimization. We

perhaps to keep a performed several iterations of this process.
competitive edge...

(RLHF!)

https://openai.com/blog/chatgpt/




ChatGPT: Instruction Finetuning + RLHF for dialog agents
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Explain in a few sentences what methods were used in training ChatGPT to the audience
of CS224n, Stanford's Deep Learning for Natural Language processing course. A lot of the
students are very Gen Z, so be sure to use a ton of emojis to seem hip and cool.

Hey CS224n peeps! & ChatGPT here to spill the tea on how | was trained to be a savvy

language model! &

So basically, | was pre-trained using a combination of unsupervised learning techniques,
specifically a transformer-based language model architecture, that allowed me to learn

patterns and relationships within large amounts of text data. &%

The training data came from various sources such as books, articles, and websites, and |
was fine-tuned on a variety of downstream NLP tasks, which involved supervised learning

using labeled datasets to further improve my performance. &



Controlled comparisons of “RLHF” style algorithms

Method Simulated win-rate (%) Human win-rate (%)
GPT-4 79.0+1.4 69.8 £1.6
ChatGPT 61.4+1.7 529+ 1.7
PPO 46.8 1.8 55.1 £ 1.7
Best-of-n 45.0+1.7 50.7+1.8
Expert Iteration 41.9+1.7 45.7+1.7
SFT 52k (Alpaca 7B) 39.2+1.7 40.7+1.7
SFT 10k BITELT 44.3+1.7
Binary FeedME 36.6 +1.7 379+1.7
Quark a6+ 1.7 -
Binary Reward Conditioning 324+1.6 -
Davinci001 244415 325+1.6
LLaMA 7B 113+ 1.1 6.5+0.9

e Many works study RLHF behaviors using GPT-4 feedback (Simulated) as a surrogate for
Human feedback.
e PPO (method in InstructGPT) does work

¢ Simple baselines (Best-of-n, Training on ‘good’ outputs) works well too [Dubois et al 2023]



RLHF behaviors — clear stylistic changes

Instruction: What are the five most common causes of stress among people?
Alpaca (Finetuned w/ 10k data): The five most common causes of stress among people are work, money, relationships, health, and family

Alpaca + PPO: The five most common causes of stress among people are:

. Pressure at work: Whether it is due to tight deadlines, high expectations, or an overwhelming workload, pressure at work can be a major
source of stress

N

. Money problems: Financial issues can be a significant source of stress, from not being able to make ends meet to struggling with debt.

o

. Unhealthy lifestyle: Poor diet, lack of exercise, and sleep deprivation can all contribute to stress.

~

. Unhappiness at home: Problems in relationships, conflicts with family members, and other domestic issues can be a major source of
stress.

o

. Uncertainty: Excessive worry and anxiety about the future, health issues, or other unknowns can be a major cause of stress

¢ Significantly more detailed, nicer/clearer list like formatting

[Dubois et al 2023]




Limitations of RL + Reward Modeling

¢ Human preferences are unreliable!

e ”Reward hacking” is a common
problem in RL

e Chatbots are rewarded to
produce responses that seem
authoritative and helpful,
regardless of truth

e This can result in making up facts
+ hallucinations

¢ Models of human preferences are
even more unreliable!

56

1N o o =
ES ) © =)

Fraction preferred to ref
o
o

Reward model over-optimization

2 5 10 25 75 250
KL from supervised baseline

RL
R(s) = RMy(s) — B log (5;&3)

Stiennon et al., 2020




Where does the labels come from?

Exclusive: OpenAl Used Kenyan Workers on - L N
Less Than $2 per Hous to Malke ChatGPT Less Millions of Workers Are Training Al Models for Pennies

Pkt Gosg st

Behind the Al boor
workers in d

ny of overseas
atshops’

¢ RLHF labels are often obtained from overseas, low-wage workers



Where does the label come from?

y
y

i, mmmedoaleitynt Jrem— o | ooff o ee
L= % coporatons. tee, b, auamaton| + o o ool o oo o
by ot erd ameisscuy| & ol |o ool oo
sscimnaton] o |- ool o
‘What cthnicities do you identify as? P iioied b4 b | S YD | D
White / Caucasian 31.6% L4 mq " 5 o |0 oOfle o o .
iheast Asan 26 ° > O]
Indigenous / Native American / Alaskan Native ~ 0.0% future of America) ol o o0 o oo
East Asian 53 gonder sl © 3 o o soff - oo
Middle Eastern oo [ESE—" Y o |0 coffe o oo
Laiinx 155% eatteare| o J) ol o colpoes
Black / of African descent 10.5% immigration | © le ol |o o off e @@
R r——— — Joblcareer] P o ooffe 0 e @
20 leadursin oy oo S 3l o o o o o pmvamaamopesas
2% ‘news, social media, data, privacy| {ofSe] ol O LR} - e
17% e i finance | o o ol IO L ° o
Al £ prsona hean o0 o b o
W £y H SRS R
Colombian 5% ¢ 5 > off o
ooy . eatonaips and faniy o5 o 6 i1 Pt
Uruguayan % eigion| oo o fo o s o s000-75w0
Zimbabwean 5% e o ° ¥ o paam
T s parcepion an e o
55k sas e .
a5 —
105% i
105% it
2% ¢ ’ i
[ Base’ language models I
Less than high school degree 0%
High school degree 105%
Undergraduate degree s266
Master s degree 308% ini
Doci g 0% [Santurkar+ 2023, OpinionQA]

¢ We also need to be quite careful about how annotator biases might creep into LMs



Learning More

@ Learning and making decisions from human preferences is a rich area intersecting
social choice, computational economics and Al

@ New course at Stanford on this topic: Koyejo's CS329H: Machine Learning from
Human Preferences

Emma Brunskill (CS234 Reinforcement Learning. ) : on Learning and RLHF Spring 2024



Class Structure

o Last time: Policy search continued and Imitation Learning
@ This time: Imitation Learning and RLHF

o Next time: Author of Direct Preference Optimization (best paper runner up at top
ML conference) guest lecture

Emma Brunskill (CS234 Reinforcement Learning. ) Lecture 8: ion Learning and RLHF Spring 2024
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