Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam (OpenAI)'s slides, with minor modifications

Emma Brunskill

CS234 Reinforcement Learning.

Spring 2024

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradi

- Select all that are true about policy gradients:
 - **1** $\nabla_{\theta} V(\theta) = \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(s, a) Q^{\pi_{\theta}}(s, a)] \mathcal{T}$ **2** θ is always increased in the direction of $\nabla_{\theta} \ln(\pi(S_t, A_t, \theta))$.
 - State-action pairs with higher estimated Q values will increase in probability on average
 - ${igsim}$ Are guaranteed to converge to the global optima of the policy class ${m arsigma}$
 - Ont sure

- Select all that are true about policy gradients:

 - **2** θ is always increased in the direction of $\nabla_{\theta} \ln(\pi(S_t, A_t, \theta))$.
 - 0 State-action pairs with higher estimated Q values will increase in probability on average
 - Are guaranteed to converge to the global optima of the policy class
 - Ont sure

1 and 3 are true. The direction of θ also depends on the Q-values /returns. We are only guaranteed to reach a local optima

- Last time: Policy Search
- This time: Policy search continued.

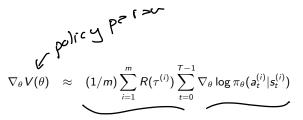
æ

< □ > < 同 > <

- Likelihood ratio / score function policy gradient
 - Baseline
 - Alternative targets
- Advanced policy gradient methods
 - Proximal policy optimization (PPO) (will implement in homework)

・ロト ・ 一 ト ・ ヨト ・

Likelihood Ratio / Score Function Policy Gradient



- Unbiased but very noisy
- Fixes that can make it practical
 - Temporal structure
 - Baseline
 - Alternatives to using Monte Carlo returns $R(\tau^{(i)})$ as targets

- Goal: Converge as quickly as possible to a local optima
 - To obtain data that use to learn, have to make actual decisions which may be suboptimal
 - Aim: minimize number of iterations / time steps until reach a good policy

Image: A matrix

Policy Gradient Algorithms and Reducing Variance

< - Fill ▶

1 Policy Gradient Algorithms and Reducing Variance

Baseline

• Alternatives to MC Returns

• Reduce variance by introducing a baseline b(s)

$$\nabla_{\theta} \mathbb{E}_{\tau}[R] = \mathbb{E}_{\tau} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi(a_t | s_t; \theta) \left(\sum_{t'=t}^{T-1} r_{t'} - b(s_t) \right) \right] \qquad \mathcal{O}^{\checkmark} \qquad \mathcal{O}^{\checkmark}$$

- For any choice of *b*, gradient estimator is unbiased.
- Near optimal choice is the expected return,

$$b(s_t) \approx \mathbb{E}[r_t + r_{t+1} + \cdots + r_{T-1}]$$

• Interpretation: increase logprob of action a_t proportionally to how much returns $\sum_{t'=t}^{T-1} r_{t'}$ are better than expected

12 not frig

Baseline b(s) Does Not Introduce Bias–Derivation

$$\begin{aligned} \int g_{0} |s| & \text{is to show} = O \\ & \mathbb{E}\left[\nabla_{\theta} \log \pi(a_{t}|s_{t};\theta)b(s_{t})\right] & \text{Y: so: } \pi^{-a_{O}: } \pi_{-i} \\ & = \mathbb{E}_{s_{0:t},a_{0:(t-1)}}\left[\mathbb{E}_{s_{(t+1):T},a_{t:(T-1)}}[\nabla_{\theta} \log \pi(a_{t}|s_{t};\theta)b(s_{t})]\right] \\ & = \mathbb{E}_{s_{0:t},a_{0:(t-1)}}\left[b(s_{T}) \in S_{TT}: \pi_{T}: \pi_{T}: \nabla_{\theta} \log \pi(a_{t}|s_{t};\theta)\right] \\ & = \mathbb{E}_{s_{0:t},a_{0:t+1}}\left[b(s_{T}) \leq S_{TT}: \pi_{T}: \pi_{T}: \nabla_{\theta} \log \pi(a_{t}|s_{t};\theta)\right] \\ & = \mathbb{E}_{s_{0:t},a_{0:t+1}}\left[b(s_{T}) \leq S_{T}: \pi(a_{T}|s_{1}|\theta) \nabla \log \pi(a_{t}|s_{t};\theta)\right] \\ & = \mathbb{E}_{s_{0:t},a_{0:t+1}}\left[b(s_{T}) \leq S_{T}: \pi(a_{T}|s_{1}|\theta) \nabla \log \pi(a_{t}|s_{t};\theta)\right] \\ & = \mathbb{E}_{s_{0:t},a_{0:t+1}}\left[b(s_{T}) \leq S_{T}: \pi(a_{T}|s_{1}|\theta) \nabla_{\theta}\pi(a_{T}|s_{1};\theta)\right] \\ & = \mathbb{E}_{s_{0:t},a_{0:t+1}}\left[b(s_{T}) \leq S_{T}: \pi(a_{T}|s_{1}|\theta) \nabla_{\theta}\pi(a_{T}|s_{1};\theta)\right] \\ & = \mathbb{E}_{s_{0:t},a_{0:t+1}}\left[b(s_{T}) \otimes S_{T}: \pi(a_{T}|s_{T};\theta) \sum_{\pi}\pi(a_{T}|s_{T};\theta)\right] \\ & = \mathbb{E}_{s_{0:t},a_{0:t+1}}\left[b(s_{T}) \otimes S_{T}: \pi(a_{T}|s_{T};\theta) \sum_{\pi}\pi(a_{T}|s_{T};\theta) \sum_{$$

Image: Image:

$$\begin{split} &\mathbb{E}_{\tau} [\nabla_{\theta} \log \pi(a_t | s_t; \theta) b(s_t)] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[\mathbb{E}_{s_{(t+1):T}, a_{t:(T-1)}} [\nabla_{\theta} \log \pi(a_t | s_t; \theta) b(s_t)] \right] \text{(break up expectation)} \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \mathbb{E}_{s_{(t+1):T}, a_{t:(T-1)}} [\nabla_{\theta} \log \pi(a_t | s_t; \theta)] \right] \text{(pull baseline term out)} \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \mathbb{E}_{a_t} [\nabla_{\theta} \log \pi(a_t | s_t; \theta)] \right] \text{(remove irrelevant variables)} \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \sum_{a} \pi_{\theta}(a_t | s_t) \frac{\nabla_{\theta} \pi(a_t | s_t; \theta)}{\pi_{\theta}(a_t | s_t)} \right] \text{(likelihood ratio)} \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \sum_{a} \nabla_{\theta} \pi(a_t | s_t; \theta) \right] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \nabla_{\theta} \sum_{a} \pi(a_t | s_t; \theta) \right] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \nabla_{\theta} \left[a_{t} | s_{t}; \theta \right] \right] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \nabla_{\theta} 1 \right] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \cdot 0 \right] = 0 \end{split}$$

Image: Image:

```
Initialize policy parameter \theta, baseline b
for iteration=1, 2, ... do
Collect a set of trajectories by executing the current policy
At each timestep t in each trajectory \tau^i, compute
Return G_t^i = \sum_{t'=t}^{T-1} r_{t'}^i, and
Advantage estimate \hat{A}_t^i = G_t^i - b(s_t^i).
Re-fit the baseline, by minimizing \sum_i \sum_t |b(s_t^i) - G_t^i|^2,
Update the policy, using a policy gradient estimate \hat{g},
Which is a sum of terms \nabla_{\theta} \log \pi(a_t | s_t, \theta) \hat{A}_t.
(Plug \hat{g} into SGD or ADAM)
endfor
```

```
Initialize policy parameter \theta, baseline b

for iteration=1, 2, ... do

Collect a set of trajectories by executing the current policy

At each timestep t in each trajectory \tau^i, compute

Return G_t^i = \sum_{t'=t}^{T-1} r_{t'}^i, and

Advantage estimate \hat{A}_t^i = \underline{G}_t^i - \underline{b}(\underline{s}_t^i).

Re-fit the baseline, by minimizing \sum_i \sum_t |b(s_t^i) - G_t^i|^2,

Update the policy, using a policy gradient estimate \hat{g},

Which is a sum of terms \nabla_{\theta} \log \pi(a_t | s_t, \theta) \hat{A}_t.

(Plug \hat{g} into SGD or ADAM)

endfor
```

Recall Q-function / state-action-value function:

$$\begin{array}{ccc}
\left(f_{0}v & n & \cdots & p & s_{0} \\
f_{0}v & n & \cdots & p & s_{0} \\
e & p & s_{0} & d(z & s_{0} & s_{0} \\
e & p & s_{0} & d(z & s_{0} & s_{0} \\
g & g & g & g \\
\end{array} \right)$$

State-value function can serve as a great baseline

$$V^{\pi}(s) = \mathbb{E}_{\pi} \left[r_0 + \gamma r_1 + \gamma^2 r_2 \cdots |s_0 = s \right]$$
$$= \mathbb{E}_{a \sim \pi} [Q^{\pi}(s, a)]$$

Policy Gradient Algorithms and Reducing Variance

< - Fill ▶

• Baseline

Policy Gradient Algorithms and Reducing Variance Alternatives to MC Returns

<

• Policy gradient:

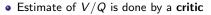
$$abla_ heta \mathbb{E}[R] pprox (1/m) \sum_{i=1}^m \sum_{t=0}^{T-1}
abla_ heta \log \pi_ heta(a_t, s_t)(G_t^{(i)} - b(s_t))$$

- Fixes that improve simplest estimator
 - Temporal structure (shown in above equation)
 - Baseline (shown in above equation)
 - Alternatives to using Monte Carlo returns Gⁱ_t as estimate of expected discounted sum of returns for the policy parameterized by θ?

Image: A matrix

- G_t^i is an estimation of the value function at s_t from a single roll out
- Unbiased but high variance
- Reduce variance by introducing bias using bootstrapping and function approximation
 - Just like we saw for TD vs MC, and value function approximation

Image: A matrix and a matrix



- Actor-critic methods maintain an explicit representation of policy and the value function, and update both
- A3C (Mnih et al. ICML 2016) is a very popular actor-critic method

Image: A matrix and a matrix

0 V/Q actor critic

Policy Gradient Formulas with Value Functions

• Recall:

$$\nabla_{\boldsymbol{\theta}} \mathbb{E}_{\tau}[R] = \mathbb{E}_{\tau} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi(a_t | s_t; \theta) \left(\sum_{t'=t}^{T-1} r_{t'} - b(s_t) \right) \right]$$
$$\nabla_{\theta} \mathbb{E}_{\tau}[R] \approx \mathbb{E}_{\tau} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi(a_t | s_t; \theta) \left(Q(s_t, a_t; \boldsymbol{w}) - b(s_t) \right) \right]$$

• Letting the baseline be an estimate of the value V, we can represent the gradient in terms of the state-action advantage function

$$abla_ heta \mathbb{E}_ au[R] pprox \mathbb{E}_ au\left[\sum_{t=0}^{T-1}
abla_ heta \log \pi(a_t|s_t; heta) \hat{A}^\pi(s_t,a_t)
ight]$$

• where the advantage function $A^{\pi}(s,a) = Q^{\pi}(s,a) - V^{\pi}(s)$

Choosing the Target: N-step estimators

Image: Image:

• Note that critic can select any blend between TD and MC estimators for the target to substitute for the true state-action value function.

$$abla_{ heta} V(heta) \quad pprox \quad (1/m) \sum_{i=1}^m \sum_{t=0}^{T-1} R_t^i
abla_{ heta} \log \pi_{ heta}(\boldsymbol{a}_t^{(i)} | \boldsymbol{s}_t^{(i)})$$

 Note that critic can select any blend between TD and MC estimators for the target to substitute for the true state-action value function.

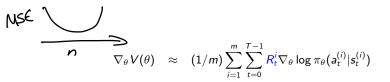
$$\hat{R}_{t}^{(1)} = r_{t} + \gamma V(s_{t+1})
\hat{R}_{t}^{(2)} = r_{t} + \gamma r_{t+1} + \gamma^{2} V(s_{t+2})
\hat{R}_{t}^{(inf)} = r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+2} + \cdots$$

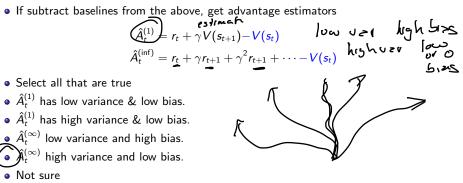
• If subtract baselines from the above, get advantage estimators

$$\hat{A}_t^{(1)} = r_t + \gamma V(s_{t+1}) - V(s_t)$$
$$\hat{A}_t^{(inf)} = r_t + \gamma r_{t+1} + \gamma^2 r_{t+1} + \dots - V(s_t)$$

<

L6N2 Check Your Understanding: Blended Advantage Estimators





$$abla_ heta V(heta) ~pprox (1/m) \sum_{i=1}^m \sum_{t=0}^{T-1} \mathcal{R}^i_t
abla_ heta \log \pi_ heta(m{a}^{(i)}_t|m{s}^{(i)}_t)$$

• If subtract baselines from the above, get advantage estimators

$$\hat{A}_t^{(1)} = r_t + \gamma V(s_{t+1}) - V(s_t)$$
$$\hat{A}_t^{(inf)} = r_t + \gamma r_{t+1} + \gamma^2 r_{t+1} + \dots - V(s_t)$$

Solution: $\hat{A}_t^{(1)}$ has low variance & high bias. $\hat{A}_t^{(\infty)}$ high variance but low bias.

25 / 74

- G_t^i is an estimation of the value function at s_t from a single roll out
- Unbiased but high variance
- Reduce variance by introducing bias using bootstrapping and function approximation
 - Just like in we saw for TD vs MC, and value function approximation

Image: A matrix and a matrix

- Estimate of V/Q is done by a critic
- Actor-critic methods maintain an explicit representation of policy and the value function, and update both
- A3C (Mnih et al. ICML 2016) is a very popular actor-critic method

Policy Gradient Formulas with Value Functions

• Recall:

$$\nabla_{\theta} \mathbb{E}_{\tau}[R] = \mathbb{E}_{\tau} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi(a_t | s_t; \theta) \left(\sum_{t'=t}^{T-1} r_{t'} - b(s_t) \right) \right]$$
$$\nabla_{\theta} \mathbb{E}_{\tau}[R] \approx \mathbb{E}_{\tau} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi(a_t | s_t; \theta) \left(Q(s_t, a_t; \boldsymbol{w}) - b(s_t) \right) \right]$$

• Letting the baseline be an estimate of the value V, we can represent the gradient in terms of the state-action advantage function

$$abla_ heta \mathbb{E}_ au[R] pprox \mathbb{E}_ au\left[\sum_{t=0}^{T-1}
abla_ heta \log \pi(a_t|s_t; heta) \hat{A}^\pi(s_t,a_t)
ight]$$

• where the advantage function $A^{\pi}(s,a) = Q^{\pi}(s,a) - V^{\pi}(s)$

Advanced Policy Gradients

< □ > < □ > < □ > < □ > < □ > < □ >

æ

Theory:

- Problems with Policy Gradient Methods
- Policy Performance Bounds
- Monotonic Improvement Theory ____ rext week

Algorithms:

1 Proximal Policy Optimization

The Problems with Policy Gradients

Image: A marked black

Policy gradient algorithms try to solve the optimization problem

$$\max_{\theta} J(\pi_{\theta}) \doteq \mathop{\mathrm{E}}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{\infty} \gamma^{t} r_{t} \right]$$

by taking stochastic gradient ascent on the policy parameters θ , using the *policy gradient*

$$g = \nabla_{\theta} J(\pi_{\theta}) = \mathop{\mathbb{E}}_{\substack{\tau \sim \pi_{\theta} \\ t = 0}} \left[\sum_{t=0}^{\infty} \gamma^{t} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) A^{\pi_{\theta}}(s_{t}, a_{t}) \right]$$

Limitations of policy gradients:

- Sample efficiency is poor
- Distance in parameter space \neq distance in policy space!
 - What is policy space? For tabular case, set of matrices

$$\Pi = \left\{ \pi \ : \ \pi \in \mathbb{R}^{|S| \times |A|}, \ \sum_{a} \pi_{sa} = 1, \ \pi_{sa} \ge 0 \right\}$$

- Policy gradients take steps in parameter space
- Step size is hard to get right as a result

- Sample efficiency for vanilla policy gradient methods is poor
- Discard each batch of data immediately after just one gradient step
- Why? PG is an on-policy expectation.
- Two main approaches to obtaining an unbiased estimate of the policy gradient
 - Collect sample trajectories from policy, then form sample estimate. (More stable)
 - Use trajectories from other policies (Less stable)
- Opportunity: use old data to take **multiple gradient steps** before using the resulting new policy to gather more data
- Challenge: even if this is possible to use old data to estimate multiple gradients, how many steps should be taken?

< ロ > < 同 > < 三 > <

Policy gradient algorithms are stochastic gradient ascent:

$$\theta_{k+1} = \theta_k + \alpha_k \hat{g}_k$$

with step $\Delta_k = \alpha_k \hat{g}_k$.

• If the step is too large, performance collapse is possible (Why?)

Choosing a Step Size for Policy Gradients

Policy gradient algorithms are stochastic gradient ascent:

$$\theta_{k+1} = \theta_k + \alpha_k \hat{g}_k$$

with step $\Delta_k = \alpha_k \hat{g}_k$.

- If the step is too large, performance collapse is possible (Why?)
- If the step is too small, progress is unacceptably slow
- "Right" step size changes based on θ

Automatic learning rate adjustment like advantage normalization, or Adam-style optimizers, can help. But does this solve the problem?

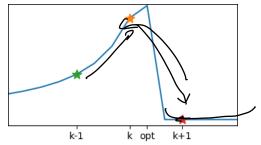


Figure: Policy parameters on *x*-axis and performance on *y*-axis. A bad step can lead to performance collapse, which may be hard to recover from.

The Problem is More Than Step Size

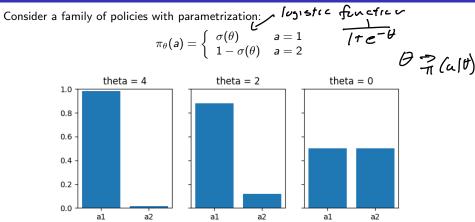


Figure: Small changes in the policy parameters can unexpectedly lead to big changes in the policy.

Big question: how do we come up with an update rule that doesn't ever change the policy more than we meant to?

Spring 2024

Policy Performance Bounds

< □ > < □ > < □ > < □ > < □ > < □ >

æ

In a policy optimization algorithm, we want an update step that

- uses rollouts collected from the most recent policy as efficiently as possible,
- and takes steps that respect **distance in policy space** as opposed to distance in parameter space.

To figure out the right update rule, we need to exploit relationships between the performance of two policies.

Performance difference lemma: In CS234 HW2 we ask you to prove that for any policies π, π' $J(\pi') - J(\pi) = \underbrace{E}_{\pi \sim \pi'} \left[\sum_{t=0}^{\infty} \gamma^t A^{\pi}(s_t, a_t) \right] \qquad Q^{\pi}(s_t, a_t) = \underbrace{V^{\pi}(s_t)}_{(1)}$

where

$$d^{\pi}(s) = (1-\gamma)\sum_{t=0}^{\infty}\gamma^t P(s_t=s|\pi)$$

Can we use this for policy improvement, where π' represents the new policy and π represents the old one?

$$\max_{\pi'} J(\pi') = \max_{\pi'} J(\pi') - J(\pi)$$
$$= \max_{\pi'} \mathop{\mathrm{E}}_{\tau \sim \pi'} \left[\sum_{t=0}^{\infty} \gamma^t A^{\pi}(s_t, a_t) \right]$$

This is suggestive, but not useful yet.

Nice feature of this optimization problem: defines the performance of π' in terms of the advantages from $\pi!$

But, problematic feature: still requires trajectories sampled from $\pi' \dots$ gozl: LStimst J(m') only from Jate from

we can

In terms of the **discounted future state distribution** d^{π} , defined by

$$d^{\pi}(s) = (1 - \gamma) \sum_{t=0}^{\infty} \gamma^{t} P(s_{t} = s | \pi),$$

rewrite the relative policy performance identity:

$$J(\pi') - J(\pi) = \underbrace{\sum_{\tau \sim \pi'}}_{T \sim \pi'} \left[\sum_{t=0}^{\infty} \gamma^{t} A^{\pi}(s_{t}, a_{t}) \right]$$

$$= \frac{1}{1 - \gamma} \underbrace{f}_{a \sim \pi'} d^{\pi} (A^{\pi}(s, a))$$

$$= \frac{1}{1 - \gamma} \underbrace{f}_{a \sim \pi'} d^{\pi} A^{\pi}(s, a)$$

$$= \frac{1}{1 - \gamma} \underbrace{f}_{a \sim \pi'} d^{\pi} A^{\pi}(s, a)$$

$$= \frac{1}{1 - \gamma} \underbrace{f}_{a \sim \pi'} d^{\pi} A^{\pi}(s, a)$$

$$= \frac{1}{1 - \gamma} \underbrace{f}_{a \sim \pi'} d^{\pi} A^{\pi}(s, a)$$

$$= \frac{1}{1 - \gamma} \underbrace{f}_{a \sim \pi'} d^{\pi} A^{\pi}(s, a)$$

$$= \frac{1}{1 - \gamma} \underbrace{f}_{a \sim \pi'} d^{\pi} A^{\pi}(s, a)$$

$$= \frac{1}{1 - \gamma} \underbrace{f}_{a \sim \pi'} d^{\pi} A^{\pi}(s, a) \underbrace{f}_{\pi}(a|s) A^{\pi}(s, a)$$

$$= \frac{1}{1 - \gamma} \underbrace{f}_{a \sim \pi'} d^{\pi} f_{a \sim \pi'} d^{\pi}(s, a) \underbrace{f}_{\pi}(a|s) A^{\pi}(s, a)$$

< □ > < □ > < □ > < □ > < □ > < □ >

æ

In terms of the **discounted future state distribution** d^{π} , defined by

$$d^{\pi}(s) = (1 - \gamma) \sum_{t=0}^{\infty} \gamma^t P(s_t = s | \pi),$$

we can rewrite the relative policy performance identity:

$$(\pi') - J(\pi) = \mathop{\mathrm{E}}_{\tau \sim \pi'} \left[\sum_{t=0}^{\infty} \gamma^t A^{\pi}(s_t, a_t) \right]$$
$$= \frac{1}{1 - \gamma} \mathop{\mathrm{E}}_{\substack{s \sim a^{\pi'} \\ a \sim \pi'}} [A^{\pi}(s, a)]$$
$$= \frac{1}{1 - \gamma} \mathop{\mathrm{E}}_{\substack{s \sim a^{\pi'} \\ s \sim a^{\pi} \\ \pi \sim \pi}} \left[\frac{\pi'(a|s)}{\pi(a|s)} A^{\pi}(s, a) \right]$$

Last step is an instance of importance sampling (more on this next time)

・ロト ・同ト ・ヨト ・ヨト

In terms of the **discounted future state distribution** d^{π} , defined by

$$d^{\pi}(s) = (1 - \gamma) \sum_{t=0}^{\infty} \gamma^{t} P(s_t = s | \pi),$$

we can rewrite the relative policy performance identity:

$$\begin{split} I(\pi') - J(\pi) &= \mathop{\mathbb{E}}_{\tau \sim \pi'} \left[\sum_{t=0}^{\infty} \gamma^t A^{\pi}(s_t, a_t) \right] \\ &= \frac{1}{1 - \gamma} \mathop{\mathbb{E}}_{\substack{s \sim d^{\pi'} \\ a \sim \pi'}} \left[A^{\pi}(s, a) \right] \\ &= \frac{1}{1 - \gamma} \mathop{\mathbb{E}}_{\substack{s \sim d^{\pi'} \\ a \sim \pi}} \left[\frac{\pi'(a|s)}{\pi(a|s)} A^{\pi}(s, a) \right] \end{split}$$

...almost there! Only problem is $s \sim d^{\pi'}$.

J

э

What if we just said $d^{\pi'} \approx d^{\pi}$ and didn't worry about it?

$$J(\pi') - J(\pi) \approx \frac{1}{1 - \gamma} \mathop{\mathrm{E}}_{\substack{s \sim \sigma^{\pi} \\ a \sim \pi}} \left[\frac{\pi'(a|s)}{\pi(a|s)} A^{\pi}(s, a) \right]$$
$$\stackrel{:}{=} \mathcal{L}_{\pi}(\pi')$$

Turns out: this approximation is pretty good when π' and π are close! But why, and how , constant close do they have to be?

Relative policy performance bounds: ¹

$$\left|J(\pi') - \left(J(\pi) + \mathcal{L}_{\pi}(\pi')\right)\right| \le C_{\sqrt{\sum_{s \sim d^{\pi}} \left[D_{\mathcal{KL}}(\pi'||\pi)[s]\right]}} \tag{3}$$

If policies are close in KL-divergence—the approximation is good!

¹Achiam, Held, Tamar, Abbeel, 2017

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradi

For probability distributions P and Q over a discrete random variable, $\pi'(a|s)$ $\pi(a|s)$

$$T^{T}(\alpha I S) = T^{T}(\alpha I S)$$

$$D_{KL}(P||Q) = \sum_{x} P(x) \log \frac{P(x)}{Q(x)}$$

Properties:

- $D_{KL}(P||P) = 0$
- $D_{\mathit{KL}}(P||Q) \geq 0$
- $D_{KL}(P||Q) \neq D_{KL}(Q||P)$ Non-symmetric!

What is KL-divergence between policies?

$$D_{ extsf{KL}}(\pi'||\pi)[s] = \sum_{a \in \mathcal{A}} \pi'(a|s) \log rac{\pi'(a|s)}{\pi(a|s)}$$

Image: A matrix and a matrix

What did we gain from making that approximation?

$$egin{aligned} \mathcal{J}(\pi') - \mathcal{J}(\pi) &\approx \mathcal{L}_{\pi}(\pi') \ \mathcal{L}_{\pi}(\pi') &= rac{1}{1 - \gamma} \mathop{\mathrm{E}}_{\substack{s \sim d^{\pi} \ a \sim \pi}} \left[rac{\pi'(a|s)}{\pi(a|s)} \mathcal{A}^{\pi}(s,a)
ight] \ &= \mathop{\mathrm{E}}_{\tau \sim \pi} \left[\sum_{t=0}^{\infty} \gamma^{t} rac{\pi'(a_{t}|s_{t})}{\pi(a_{t}|s_{t})} \mathcal{A}^{\pi}(s_{t},a_{t})
ight] \end{aligned}$$

- This is something we can optimize using trajectories sampled from the old policy $\pi!$
- Similar to using importance sampling, but because weights only depend on current timestep (and not preceding history), they don't vanish or explode.

- $\bullet\,$ "Approximately Optimal Approximate Reinforcement Learning," Kakade and Langford, 2002 2
- "Trust Region Policy Optimization," Schulman et al. 2015 ³
- "Constrained Policy Optimization," Achiam et al. 2017 ⁴

²https://people.eecs.berkeley.edu/ pabbeel/cs287-fa09/readings/KakadeLangford-icml2002.pdf ³https://arxiv.org/pdf/1502.05477.pdf ⁴https://arxiv.org/pdf/1705.10528.pdf

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradi

Algorithms

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradi

ヘロア 人間 アメヨア 人口 ア

Ξ.

Proximal Policy Optimization (PPO) is a family of methods that approximately penalize • Policy update solves unconstrained optimization problem from Profiles policies from changing too much between steps. Two variants:

- Adaptive KL Penalty

$$\theta_{k+1} = \arg \max_{\theta} \mathcal{L}_{\theta_k}(\theta) - \frac{\beta_k}{\beta_{KL}} \bar{D}_{KL}(\theta || \theta_k)$$
(4)

Image: A matrix and a matrix

$$\bar{D}_{KL}(\theta||\theta_k) = E_{s \sim d^{\pi_k}} D_{KL}(\theta_k(\cdot|s), \pi_\theta(\cdot|s))$$
(5)

• Penalty coefficient β_k changes between iterations to approximately enforce KL-divergence constraint

Algorithm PPO with Adaptive KL Penalty

Input: initial policy parameters θ_0 , initial KL penalty β_0 , target KL-divergence δ for k = 0, 1, 2, ... do

Collect set of partial trajectories \mathcal{D}_k on policy $\pi_k = \pi(\theta_k)$ Estimate advantages $\hat{A}_t^{\pi_k}$ using any advantage estimation algorithm Compute policy update

$$heta_{k+1} = rg\max_{ heta} \mathcal{L}_{ heta_k}(heta) - eta_k ar{\mathcal{D}}_{ extsf{KL}}(heta|| heta_k)$$

by taking K steps of minibatch SGD (via Adam) if $\bar{D}_{KL}(\theta_{k+1}||\theta_k) \ge 1.5\delta$ then $\beta_{k+1} = 2\beta_k$ else if $\bar{D}_{KL}(\theta_{k+1}||\theta_k) \le \delta/1.5$ then $\beta_{k+1} = \beta_k/2$ end if end for

- Initial KL penalty not that important-it adapts quickly
- Some iterations may violate KL constraint, but most don't

Algorithm PPO with Adaptive KL Penalty

Input: initial policy parameters θ_0 , initial KL penalty β_0 , target KL-divergence δ for $k=0,1,2,\ldots$ do

Collect set of partial trajectories D_k on policy $\pi_k = \pi(\theta_k)$ Estimate advantages $\hat{A}_t^{\pi_k}$ using any advantage estimation algorithm Compute policy update

$$heta_{k+1} = rg\max_{ heta} \mathcal{L}_{ heta_k}(heta) - eta_k ar{\mathcal{D}}_{ extsf{KL}}(heta|| heta_k)$$

by taking K steps of minibatch SGD (via Adam) if $\overline{D}_{KL}(\theta_{k+1}||\theta_k) \ge 1.5\delta$ then $\beta_{k+1} = 2\beta_k$ else if $\overline{D}_{KL}(\theta_{k+1}||\theta_k) \le \delta/1.5$ then $\beta_{k+1} = \beta_k/2$ end if end for

- Initial KL penalty not that important—it adapts quickly
- Some iterations may violate KL constraint, but most don't

Proximal Policy Optimization (PPO) is a family of methods that approximately enforce KL constraint **without computing natural gradients**. Two variants:

- Adaptive KL Penalty
 - Policy update solves unconstrained optimization problem

$$heta_{k+1} = rg\max_{ heta} \mathcal{L}_{ heta_k}(heta) - eta_k ar{D}_{ extsf{KL}}(heta|| heta_k)$$

- Penalty coefficient β_k changes between iterations to approximately enforce KL-divergence constraint
- Clipped Objective
 - New objective function: let $r_t(heta) = \pi_{ heta}(a_t|s_t)/\pi_{ heta_k}(a_t|s_t)$. Then

$$\mathcal{L}_{ heta_k}^{CLIP}(heta) = \mathop{\mathbb{E}}_{ au \sim \pi_k} \left[\sum_{t=0}^T \left[\min(r_t(heta) \hat{A}_t^{\pi_k}, \operatorname{clip}\left(r_t(heta), 1-\epsilon, 1+\epsilon
ight) \hat{A}_t^{\pi_k}
ight)
ight]
ight]$$

where ϵ is a hyperparameter (maybe $\epsilon = 0.2$)

• Policy update is $\theta_{k+1} = \arg \max_{\theta} \mathcal{L}_{\theta_k}^{CLIP}(\theta)$

< ロ > < 同 > < 三 > < 三 >

L6N3 Check Your Understanding: Proximal Policy Optimization

• Clipped Objective function: let $r_t(\theta) = \pi_{\theta}(a_t|s_t)/\pi_{\theta_k}(a_t|s_t)$. Then

$$\mathcal{L}_{\theta_{k}}^{CLIP}(\theta) = \mathop{\mathbb{E}}_{\tau \sim \pi_{k}} \left[\sum_{t=0}^{T} \left[\min(r_{t}(\theta) \hat{A}_{t}^{\pi_{k}}, \operatorname{clip}(r_{t}(\theta), 1-\epsilon, 1+\epsilon) \hat{A}_{t}^{\pi_{k}}) \right] \right]$$

$$Consider \quad Gradier \quad Carsider \quad Carside$$

- where ϵ is a hyperparameter (maybe $\epsilon = 0.2$)
- Policy update is $\theta_{k+1} = \arg \max_{\theta} \mathcal{L}_{\theta_k}^{CLIP}(\theta)$. Consider the figure⁵. Select all that are true. $\epsilon \in (0, 1)$.
- The left graph shows the L^{CLIP} objective when the advantage function A > 0 and the right graph shows when A < 0
 - **③** The right graph shows the L^{CLIP} objective when the advantage function A > 0 and the left graph shows when A < 0
 - It depends on the value of ϵ X • Not sure $f \in C^{r} c^{r}$ • $f \in C^{r} c^{r}$ • f

52 / 74

L6N3: Check Your Understanding L6N2 Proximal Policy Optimization Solutions

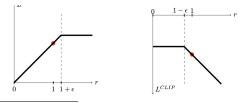
• Clipped Objective function: let $r_t(\theta) = \pi_{\theta}(a_t|s_t)/\pi_{\theta_k}(a_t|s_t)$. Then

$$\mathcal{L}^{\textit{CLIP}}_{\theta_k}(\theta) = \mathop{\mathrm{E}}_{\tau \sim \pi_k} \left[\sum_{t=0}^T \left[\min(r_t(\theta) \hat{A}^{\pi_k}_t, \mathsf{clip}\left(r_t(\theta), 1-\epsilon, 1+\epsilon\right) \hat{A}^{\pi_k}_t) \right] \right]$$

- where ϵ is a hyperparameter (maybe $\epsilon = 0.2$)
- Policy update is $\theta_{k+1} = \arg \max_{\theta} \mathcal{L}_{\theta_k}^{CLIP}(\theta)$.

Consider the figure⁶. Select all that are true. $\epsilon \in (0, 1)$.

The left graph shows the L^{CLIP} objective when the advantage function A > 0 and the right graph shows when A < 0



⁶Schulman, Wolski, Dhariwal, Radford, Klimov, 2017

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradi

But *how* does clipping keep policy close? By making objective as pessimistic as possible about performance far away from θ_k :

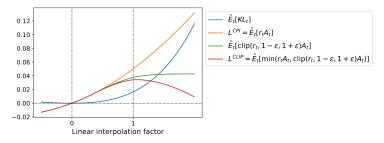


Figure: Various objectives as a function of interpolation factor α between θ_{k+1} and θ_k after one update of PPO-Clip ⁷

⁷Schulman, Wolski, Dhariwal, Radford, Klimov, 2017

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradi

Algorithm PPO with Clipped Objective

Input: initial policy parameters θ_0 , clipping threshold ϵ for k = 0, 1, 2, ... do Collect set of partial trajectories \mathcal{D}_k on policy $\pi_k = \pi(\theta_k)$ Estimate advantages $\hat{A}_t^{\pi_k}$ using any advantage estimation algorithm Compute policy update $\theta_{k+1} = \arg \max_{\theta} \mathcal{L}_{\theta_k}^{CLIP}(\theta)$ by taking K steps of minibatch SGD (via Adam), where

$$\mathcal{L}_{\theta_k}^{CLIP}(\theta) = \mathop{\mathbb{E}}_{\tau \sim \pi_k} \left[\sum_{t=0}^{r} \left[\min(r_t(\theta) \hat{A}_t^{\pi_k}, \operatorname{clip}\left(r_t(\theta), 1-\epsilon, 1+\epsilon\right) \hat{A}_t^{\pi_k} \right) \right]$$

end for

- Clipping prevents policy from having incentive to go far away from θ_{k+1}
- Clipping seems to work at least as well as PPO with KL penalty, but is simpler to implement

・ コ ト ・ 雪 ト ・ ヨ ト ・

Empirical Performance of PPO

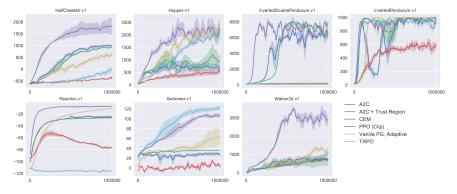


Figure: Performance comparison between PPO with clipped objective and various other deep RL methods on a slate of MuJoCo tasks. $^{8}\,$

• Wildly popular, and key component of ChatGPT

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradi

< □ > < 同 >

⁸Schulman, Wolski, Dhariwal, Radford, Klimov, 2017

PPO

- "Proximal Policy Optimization Algorithms," Schulman et al. 2017 ⁹
- $\bullet\,$ OpenAI blog post on PPO, 2017 10

9https://arxiv.org/pdf/1707.06347.pdf

¹⁰https://blog.openai.com/openai-baselines-ppo/

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradi

- Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry Rudolph, and Aleksander Madry. Implementation Matters in Deep RL: A Case Study on PPO and TRPO. ICLR 2020 https://openreview.net/forum?id=rletN1rtPB
- Reward scaling, learning rate annealing, etc. can make a significant difference

- Likelihood ratio / score function policy gradient
 - Baseline
 - Alternative targets
- Advanced policy gradient methods
 - Proximal policy optimization (PPO) algorithm (will implement in homework)

・ロト ・ 一 ト ・ ヨト ・

- Last time: Policy Search
- This time: Policy search continued.
- Next time: Proximal Policy Optimization (PPO) cont (theory and additional discussion)

< □ > < 同 >