
Lecture 4: Model Free Control and Function
Approximation

Emma Brunskill

CS234 Reinforcement Learning.

Winter 2024

Structure and content drawn in part from David Silver’s Lecture 5
and Lecture 6. For additional reading please see SB Sections 5.2-5.4,
6.4, 6.5, 6.7
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Check Your Understanding L4N1: Model-free Generalized
Policy Improvement

Consider policy iteration

Repeat:

Policy evaluation: compute Qπ

Policy improvement πi+1(s) = argmaxa Q
πi (s, a)

Question: is this πi+1 deterministic or stochastic? Assume for each
state s there is a unique maxa Q

πi (s, a).

Answer: Deterministic, Stochastic, Not Sure

Now consider evaluating the policy of this new πi+1. Recall in
model-free policy evaluation, we estimated V π, using π to generate
new trajectories

Question: Can we compute Qπi+1(s, a) ∀s, a by using this πi+1 to
generate new trajectories?

Answer: True, False, Not Sure
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Check Your Understanding L4N1: Model-free Generalized
Policy Improvement

Consider policy iteration
Repeat:

Policy evaluation: compute Qπ

Policy improvement πi+1(s) = argmaxa Q
πi (s, a)

Question: is this πi+1 deterministic or stochastic? Assume for each
state s there is a unique maxa Q

πi (s, a).

Now consider evaluating the policy of this new πi+1. Recall in
model-free policy evaluation, we estimated V π, using π to generate
new trajectories

Question: Can we compute Qπi+1(s, a) ∀s, a by using this πi+1 to
generate new trajectories?

Emma Brunskill (CS234 Reinforcement Learning. )Lecture 4: Model Free Control and Function ApproximationWinter 2024 3 / 85



Class Structure

Last time: Policy evaluation with no knowledge of how the world
works (MDP model not given)

Control (making decisions) without a model of how the world works

Generalization – Value function approximation
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Deep Q-Learning
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Model-free Policy Iteration

Initialize policy π

Repeat:

Policy evaluation: compute Qπ

Policy improvement: update π given Qπ

May need to modify policy evaluation:

If π is deterministic, can’t compute Q(s, a) for any a ̸= π(s)

How to interleave policy evaluation and improvement?

Policy improvement is now using an estimated Q
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The Problem of Exploration

Goal: Learn to select actions to maximize total expected future reward

Problem: Can’t learn about actions without trying them (need to
explore

Problem: But if we try new actions, spending less time taking actions
that our past experience suggests will yield high reward (need to
exploit knowledge of domain to achieve high rewards)
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ϵ-greedy Policies

Simple idea to balance exploration and achieving rewards

Let |A| be the number of actions

Then an ϵ-greedy policy w.r.t. a state-action value Q(s, a) is
π(a|s) =

argmaxa Q(s, a), w. prob 1− ϵ+ ϵ
|A|

a′ ̸= argmaxQ(s, a) w. prob ϵ
|A|

In words: select argmax action with probability 1− ϵ, else select
action uniformly at random
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Policy Improvement with ϵ-greedy policies

Recall we proved that policy iteration using given dynamics and
reward models, was guaranteed to monotonically improve

That proof assumed policy improvement output a deterministic policy

Same property holds for ϵ-greedy policies
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Monotonic ϵ-greedy Policy Improvement
Theorem

For any ϵ-greedy policy πi , the ϵ-greedy policy w.r.t. Qπi , πi+1 is a
monotonic improvement V πi+1 ≥ V πi

Qπi (s, πi+1(s)) =
∑
a∈A

πi+1(a|s)Q
πi (s, a)

= (ϵ/|A|)

∑
a∈A

Qπi (s, a)

 + (1− ϵ) max
a

Qπi (s, a)
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Today: Model-free Control

Generalized policy improvement

Importance of exploration

Monte Carlo control

Model-free control with temporal difference (SARSA, Q-learning)
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Recall Monte Carlo Policy Evaluation, Now for Q

1: Initialize Q(s, a) = 0,N(s, a) = 0 ∀(s, a), k = 1, Input ϵ = 1, π
2: loop
3: Sample k-th episode (sk,1, ak,1, rk,1, sk,2, . . . , sk,T ) given π
3: Compute Gk,t = rk,t + γrk,t+1 + γ2rk,t+2 + · · · γTi−1rk,Ti

∀t
4: for t = 1, . . . ,T do
5: if First visit to (s,a) in episode k then
6: N(s, a) = N(s, a) + 1
7: Q(st , at) = Q(st , at) +

1
N(s,a)(Gk,t − Q(st , at))

8: end if
9: end for

10: k = k + 1
11: end loop
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Monte Carlo Online Control / On Policy Improvement

1: Initialize Q(s, a) = 0,N(s, a) = 0 ∀(s, a), Set ϵ = 1, k = 1
2: πk = ϵ-greedy(Q) // Create initial ϵ-greedy policy
3: loop
4: Sample k-th episode (sk,1, ak,1, rk,1, sk,2, . . . , sk,T ) given πk
4: Gk,t = rk,t + γrk,t+1 + γ2rk,t+2 + · · · γTi−1rk,Ti

5: for t = 1, . . . ,T do
6: if First visit to (s, a) in episode k then
7: N(s, a) = N(s, a) + 1
8: Q(st , at) = Q(st , at) +

1
N(s,a)(Gk,t − Q(st , at))

9: end if
10: end for
11: k = k + 1, ϵ = 1/k
12: πk = ϵ-greedy(Q) // Policy improvement
13: end loop
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Optional Worked Example: MC for On Policy Control

Mars rover with new actions:
r(−, a1) = [ 1 0 0 0 0 0 +10], r(−, a2) = [ 0 0 0 0 0 0 +5], γ = 1.

Assume current greedy π(s) = a1 ∀s, ϵ=.5. Q(s, a) = 0 for all (s, a)

Sample trajectory from ϵ-greedy policy

Trajectory = (s3, a1, 0, s2, a2, 0, s3, a1, 0, s2, a2, 0, s1, a1, 1, terminal)

First visit MC estimate of Q of each (s, a) pair?

Qϵ−π(−, a1) = [1 0 1 0 0 0 0]

After this trajectory (Select all)

Qϵ−π(−, a2) = [0 0 0 0 0 0 0]

The new greedy policy would be: π = [1 tie 1 tie tie tie tie]

The new greedy policy would be: π = [1 2 1 tie tie tie tie]

If ϵ = 1/3, prob of selecting a1 in s1 in the new ϵ-greedy policy is 1/9.

If ϵ = 1/3, prob of selecting a1 in s1 in the new ϵ-greedy policy is 2/3.

If ϵ = 1/3, prob of selecting a1 in s1 in the new ϵ-greedy policy is 5/6.

Not sure
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Properties of MC control with ϵ-greedy policies

Computational complexity?

Converge to optimal Q∗ function?

Empirical performance?
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L4N2 Check Your Understanding: Monte Carlo Online
Control / On Policy Improvement

1: Initialize Q(s, a) = 0,N(s, a) = 0 ∀(s, a), Set ϵ = 1, k = 1
2: πk = ϵ-greedy(Q) // Create initial ϵ-greedy policy
3: loop
4: Sample k-th episode (sk,1, ak,1, rk,1, sk,2, . . . , sk,T ) given πk

4: Gk,t = rk,t + γrk,t+1 + γ2rk,t+2 + · · · γTi−1rk,Ti

5: for t = 1, . . . ,T do
6: if First visit to (s, a) in episode k then
7: N(s, a) = N(s, a) + 1
8: Q(st , at) = Q(st , at) +

1
N(s,a)

(Gk,t − Q(st , at))
9: end if

10: end for
11: k = k + 1, ϵ = 1/k
12: πk = ϵ-greedy(Q) // Policy improvement
13: end loop

Is Q an estimate of Qπk? When might this procedure fail to compute
the optimal Q∗?
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Greedy in the Limit of Infinite Exploration (GLIE)

Definition of GLIE

All state-action pairs are visited an infinite number of times

lim
i→∞

Ni (s, a)→∞

Behavior policy (policy used to act in the world) converges to greedy
policy
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Greedy in the Limit of Infinite Exploration (GLIE)

Definition of GLIE

All state-action pairs are visited an infinite number of times

lim
i→∞

Ni (s, a)→∞

Behavior policy (policy used to act in the world) converges to greedy
policy

A simple GLIE strategy is ϵ-greedy where ϵ is reduced to 0 with the
following rate: ϵi = 1/i
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GLIE Monte-Carlo Control using Tabular Representations

Theorem

GLIE Monte-Carlo control converges to the optimal state-action value
function Q(s, a)→ Q∗(s, a)
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Model-free Policy Iteration with TD Methods

Initialize policy π

Repeat:

Policy evaluation: compute Qπ using temporal difference updating
with ϵ-greedy policy
Policy improvement: Same as Monte carlo policy improvement, set π
to ϵ-greedy (Qπ)

Method 1: SARSA

On policy: SARSA computes an estimate Q of policy used to act
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General Form of SARSA Algorithm

1: Set initial ϵ-greedy policy π randomly, t = 0, initial state st = s0
2: Take at ∼ π(st)
3: Observe (rt , st+1)
4: loop
5: Take action at+1 ∼ π(st+1) // Sample action from policy
6: Observe (rt+1, st+2)
7: Update Q given (st , at , rt , st+1, at+1):

8: Perform policy improvement:

9: t = t + 1
10: end loop
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General Form of SARSA Algorithm

1: Set initial ϵ-greedy policy π, t = 0, initial state st = s0
2: Take at ∼ π(st) // Sample action from policy
3: Observe (rt , st+1)
4: loop
5: Take action at+1 ∼ π(st+1)
6: Observe (rt+1, st+2)
7: Q(st , at)← Q(st , at) + α(rt + γQ(st+1, at+1)− Q(st , at))
8: π(st) = argmaxa Q(st , a) w.prob 1− ϵ, else random
9: t = t + 1

10: end loop

See worked example with Mars rover at end of slides
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Properties of SARSA with ϵ-greedy policies

Computational complexity?

Converge to optimal Q∗ function? Recall:

Q(st , at)← Q(st , at) + α(rt + γQ(st+1, at+1)− Q(st , at))
π(st) = argmaxa Q(st , a) w.prob 1− ϵ, else random
Q is an estimate of the performance of a policy that may be changing
at each time step

Empirical performance?
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Convergence Properties of SARSA

Theorem

SARSA for finite-state and finite-action MDPs converges to the optimal
action-value, Q(s, a)→ Q∗(s, a), under the following conditions:

1 The policy sequence πt(a|s) satisfies the condition of GLIE

2 The step-sizes αt satisfy the Robbins-Munro sequence such that

∞∑
t=1

αt = ∞

∞∑
t=1

α2
t < ∞

For ex. αt =
1
T satisfies the above condition.
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Properties of SARSA with ϵ-greedy policies

Result builds on stochastic approximation

Relies on step sizes decreasing at the right rate

Relies on Bellman backup contraction property

Relies on bounded rewards and value function
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On and Off-Policy Learning

On-policy learning

Direct experience
Learn to estimate and evaluate a policy from experience obtained from
following that policy

Off-policy learning

Learn to estimate and evaluate a policy using experience gathered from
following a different policy
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Q-Learning: Learning the Optimal State-Action Value

SARSA is an on-policy learning algorithm

SARSA estimates the value of the current behavior policy (policy
using to take actions in the world)

And then updates that (behavior) policy

Alternatively, can we directly estimate the value of π∗ while acting
with another behavior policy πb?

Yes! Q-learning, an off-policy RL algorithm
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Q-Learning: Learning the Optimal State-Action Value

SARSA is an on-policy learning algorithm

Estimates the value of behavior policy (policy using to take actions in
the world)
And then updates the behavior policy

Q-learning

estimate the Q value of π∗ while acting with another behavior policy πb

Key idea: Maintain Q estimates and bootstrap for best future value

Recall SARSA

Q(st , at)← Q(st , at) + α((rt + γQ(st+1, at+1))− Q(st , at))

Q-learning:

Q(st , at)← Q(st , at) + α((rt + γmax
a′

Q(st+1, a
′))− Q(st , at))
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Q-Learning with ϵ-greedy Exploration

1: Initialize Q(s, a),∀s ∈ S , a ∈ A t = 0, initial state st = s0
2: Set πb to be ϵ-greedy w.r.t. Q
3: loop
4: Take at ∼ πb(st) // Sample action from policy
5: Observe (rt , st+1)
6: Q(st , at)← Q(st , at) + α(rt + γmaxa Q(st+1, a)− Q(st , at))
7: π(st) = argmaxa Q(st , a) w.prob 1− ϵ, else random
8: t = t + 1
9: end loop

See optional worked example and optional understanding check at the end
of the slides
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Q-Learning with ϵ-greedy Exploration

What conditions are sufficient to ensure that Q-learning with ϵ-greedy
exploration converges to optimal Q∗?

What conditions are sufficient to ensure that Q-learning with ϵ-greedy
exploration converges to optimal π∗?
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Motivation for Function Approximation

Avoid explicitly storing or learning the following for every single state
and action

Dynamics or reward model
Value
State-action value
Policy

Want more compact representation that generalizes across state or
states and actions

Reduce memory needed to store (P,R)/V /Q/π
Reduce computation needed to compute (P,R)/V /Q/π
Reduce experience needed to find a good (P,R)/V /Q/π
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State Action Value Function Approximation for Policy
Evaluation with an Oracle

First assume we could query any state s and action a and an oracle
would return the true value for Qπ(s, a)

Similar to supervised learning: assume given ((s, a),Qπ(s, a)) pairs

The objective is to find the best approximate representation of Qπ

given a particular parameterized function Q̂(s, a;w)

Emma Brunskill (CS234 Reinforcement Learning. )Lecture 4: Model Free Control and Function ApproximationWinter 2024 37 / 85



Stochastic Gradient Descent

Goal: Find the parameter vector w that minimizes the loss between a
true value function Qπ(s, a) and its approximation Q̂(s, a;w) as
represented with a particular function class parameterized by w .

Generally use mean squared error and define the loss as

J(w) = Eπ[(Q
π(s, a)− Q̂(s, a;w))2]

Can use gradient descent to find a local minimum

∆w = −1

2
α∇wJ(w)

Stochastic gradient descent (SGD) uses a finite number of (often
one) samples to compute an approximate gradient:

Expected SGD is the same as the full gradient update
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Stochastic Gradient Descent

Goal: Find the parameter vector w that minimizes the loss between a
true value function Qπ(s, a) and its approximation Q̂(s, a;w) as
represented with a particular function class parameterized by w .

Generally use mean squared error and define the loss as

J(w) = Eπ[(Q
π(s, a)− Q̂(s, a;w))2]

Can use gradient descent to find a local minimum

∆w = −1

2
α∇wJ(w)

Stochastic gradient descent (SGD) uses a finite number of (often
one) samples to compute an approximate gradient:

∇wJ(w) = ∇wEπ[Q
π(s, a)− Q̂(s, a;w)]2

= −2Eπ[(Q
π(s, a)− Q̂(s, a;w)]∇w Q̂(s, a,w)

Expected SGD is the same as the full gradient update

Emma Brunskill (CS234 Reinforcement Learning. )Lecture 4: Model Free Control and Function ApproximationWinter 2024 39 / 85



Table of Contents

Generalized Policy Improvement
Monte-Carlo Control with Tabular Representations
Greedy in the Limit of Infinite Exploration
Temporal Difference Methods for Control

1 Model Free Value Function Approximation
Policy Evaluation
Monte Carlo Policy Evaluation
Temporal Difference TD(0) Policy Evaluation
Control using General Value Function Approximators
Deep Q-Learning

Emma Brunskill (CS234 Reinforcement Learning. )Lecture 4: Model Free Control and Function ApproximationWinter 2024 40 / 85



Model Free VFA Policy Evaluation

No oracle to tell true Qπ(s, a) for any state s and action a

Use model-free state-action value function approximation
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Model Free VFA Prediction / Policy Evaluation

Recall model-free policy evaluation (Lecture 3)

Following a fixed policy π (or had access to prior data)
Goal is to estimate V π and/or Qπ

Maintained a lookup table to store estimates V π and/or Qπ

Updated these estimates after each episode (Monte Carlo methods)
or after each step (TD methods)

Now: in value function approximation, change the estimate
update step to include fitting the function approximator
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Monte Carlo Value Function Approximation

Return Gt is an unbiased but noisy sample of the true expected return
Qπ(st , at)

Therefore can reduce MC VFA to doing supervised learning on a set
of (state,action,return) pairs:
⟨(s1, a1),G1⟩, ⟨(s2, a2),G2⟩, . . . , ⟨(sT , aT ),GT ⟩

Substitute Gt for the true Qπ(st , at) when fit function approximator
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MC Value Function Approximation for Policy Evaluation

1: Initialize w, k = 1
2: loop
3: Sample k-th episode (sk,1, ak,1, rk,1, sk,2, . . . , sk,Lk ) given π
4: for t = 1, . . . , Lk do
5: if First visit to (s, a) in episode k then
6: Gt(s, a) =

∑Lk
j=t rk,j

7: ∇wJ(w) = −2[Gt(s, a)−Q̂(st , at ;w)]∇w Q̂(st , at ;w) (Compute
Gradient)

8: Update weights ∆w
9: end if

10: end for
11: k = k + 1
12: end loop
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Recall: Temporal Difference Learning w/ Lookup Table

Uses bootstrapping and sampling to approximate V π

Updates V π(s) after each transition (s, a, r , s ′):

V π(s) = V π(s) + α(r + γV π(s ′)− V π(s))

Target is r + γV π(s ′), a biased estimate of the true value V π(s)

Represent value for each state with a separate table entry

Note: Unlike MC we will focus on V instead of Q for policy
evaluation here, because there are more ways to create TD targets
from Q values than V values
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Temporal Difference TD(0) Learning with Value Function
Approximation

Uses bootstrapping and sampling to approximate true V π

Updates estimate V π(s) after each transition (s, a, r , s ′):

V π(s) = V π(s) + α(r + γV π(s ′)− V π(s))

Target is r + γV π(s ′), a biased estimate of the true value V π(s)

In value function approximation, target is r + γV̂ π(s ′;w), a biased
and approximated estimate of the true value V π(s)

3 forms of approximation:
1 Sampling
2 Bootstrapping
3 Value function approximation
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Temporal Difference TD(0) Learning with Value Function
Approximation

In value function approximation, target is r + γV̂ π(s ′;w), a biased
and approximated estimate of the true value V π(s)

Can reduce doing TD(0) learning with value function approximation
to supervised learning on a set of data pairs:

⟨s1, r1 + γV̂ π(s2;w)⟩, ⟨s2, r2 + γV̂ (s3;w)⟩, . . .
Find weights to minimize mean squared error

J(w) = Eπ[(rj + γV̂ π(sj+1,w)− V̂ (sj ;w))2]

Use stochastic gradient descent, as in MC methods
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TD(0) Value Function Approximation for Policy Evaluation

1: Initialize w, s
2: loop
3: Given s sample a ∼ π(s), r(s, a),s ′ ∼ p(s ′|s, a)
4: ∇wJ(w) = −2[r + γV̂ (s ′;w)− V̂ (s;w)]∇w V̂ (s;w)
5: Update weights ∆w
6: if s ′ is not a terminal state then
7: Set s = s ′

8: else
9: Restart episode, sample initial state s

10: end if
11: end loop
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Control using Value Function Approximation

Use value function approximation to represent state-action values
Q̂π(s, a;w) ≈ Qπ

Interleave

Approximate policy evaluation using value function approximation
Perform ϵ-greedy policy improvement

Can be unstable. Generally involves intersection of the following:

Function approximation
Bootstrapping
Off-policy learning
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Action-Value Function Approximation with an Oracle

Q̂π(s, a;w) ≈ Qπ

Minimize the mean-squared error between the true action-value
function Qπ(s, a) and the approximate action-value function:

J(w) = Eπ[(Q
π(s, a)− Q̂π(s, a;w))2]

Use stochastic gradient descent to find a local minimum

∇W J(w) = −2E
[
(Qπ(s, a)− Q̂π(s, a;w))∇w Q̂

π(s, a;w)
]

Stochastic gradient descent (SGD) samples the gradient

Emma Brunskill (CS234 Reinforcement Learning. )Lecture 4: Model Free Control and Function ApproximationWinter 2024 54 / 85



Incremental Model-Free Control Approaches

Similar to policy evaluation, true state-action value function for a
state is unknown and so substitute a target value for true Q(st , at)

∆w = α(Q(st , at)− Q̂(st , at ;w))∇w Q̂(st , at ;w)

In Monte Carlo methods, use a return Gt as a substitute target

∆w = α(Gt − Q̂(st , at ;w))∇w Q̂(st , at ;w)

SARSA: Use TD target r + γQ̂(s ′, a′;w) which leverages the current
function approximation value

∆w = α(r + γQ̂(s ′, a′;w)− Q̂(s, a;w))∇w Q̂(s, a;w)

Q-learning: Uses related TD target r + γmaxa′ Q̂(s ′, a′;w)

∆w = α(r + γmax
a′

Q̂(s ′, a′;w)− Q̂(s, a;w))∇w Q̂(s, a;w)
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”Deadly Triad” which Can Cause Instability

Informally, updates involve doing an (approximate) Bellman backup
followed by best trying to fit underlying value function to a particular
feature representation

Bellman operators are contractions, but value function approximation
fitting can be an expansion

To learn more, see Baird example in Sutton and Barto 2018

”Deadly Triad” can lead to oscillations or lack of convergence

Bootstrapping
Function Approximation
Off policy learning (e.g. Q-learning)
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Using these ideas to do Deep RL in Atari
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Q-Learning with Neural Networks

Q-learning converges to optimal Q∗(s, a) using tabular representation

In value function approximation Q-learning minimizes MSE loss by
stochastic gradient descent using a target Q estimate instead of true
Q

But Q-learning with VFA can diverge

Two of the issues causing problems:

Correlations between samples
Non-stationary targets

Deep Q-learning (DQN) addresses these challenges by using

Experience replay
Fixed Q-targets

Emma Brunskill (CS234 Reinforcement Learning. )Lecture 4: Model Free Control and Function ApproximationWinter 2024 59 / 85



DQNs: Experience Replay

To help remove correlations, store dataset (called a replay buffer) D
from prior experience

To perform experience replay, repeat the following:

(s, a, r , s ′) ∼ D: sample an experience tuple from the dataset
Compute the target value for the sampled s: r + γmaxa′ Q̂(s ′, a′;w)
Use stochastic gradient descent to update the network weights

∆w = α(r + γmax
a′

Q̂(s ′, a′;w)− Q̂(s, a;w))∇w Q̂(s, a;w)
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DQNs: Experience Replay

To help remove correlations, store dataset D from prior experience

To perform experience replay, repeat the following:

(s, a, r , s ′) ∼ D: sample an experience tuple from the dataset
Compute the target value for the sampled s: r + γmaxa′ Q̂(s ′, a′;w)
Use stochastic gradient descent to update the network weights

∆w = α(r + γmax
a′

Q̂(s ′, a′;w)− Q̂(s, a;w))∇w Q̂(s, a;w)

Uses target as a scalar, but function weights will get updated
on the next round, changing the target value
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DQNs: Fixed Q-Targets

To help improve stability, fix the target weights used in the target
calculation for multiple updates

Target network uses a different set of weights than the weights being
updated

Let parameters w− be the set of weights used in the target, and w
be the weights that are being updated

Slight change to computation of target value:

(s, a, r , s ′) ∼ D: sample an experience tuple from the dataset
Compute the target value for the sampled s: r + γmaxa′ Q̂(s ′, a′;w−)
Use stochastic gradient descent to update the network weights

∆w = α(r + γmax
a′

Q̂(s ′, a′;w−)− Q̂(s, a;w))∇w Q̂(s, a;w)
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DQN Pseudocode

1: Input C , α, D = {}, Initialize w , w− = w , t = 0

2: Get initial state s0
3: loop

4: Sample action at given ϵ-greedy policy for current Q̂(st , a;w)

5: Observe reward rt and next state st+1

6: Store transition (st , at , rt , st+1) in replay buffer D

7: Sample random minibatch of tuples (si , ai , ri , si+1) from D

8: for j in minibatch do

9: if episode terminated at step i + 1 then

10: yi = ri
11: else
12: yi = ri + γ maxa′ Q̂(si+1, a

′;w−)

13: end if
14: Do gradient descent step on (yi − Q̂(si , ai ;w))2 for parameters w : ∆w = α(yi − Q̂(si , ai ;w))∇w Q̂(si , ai ;w)

15: end for
16: t = t + 1
17: if mod(t,C) == 0 then

18: w− ← w
19: end if
20: end loop

Note there are several hyperparameters and algorithm choices. One needs to choose the neural network architecture, the

learning rate, and how often to update the target network. Often a fixed size replay buffer is used for experience replay, which

introduces a parameter to control the size, and the need to decide how to populate it.
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Check Your Understanding L4N3: Fixed Targets

In DQN we compute the target value for the sampled (s, a, r , s) using
a separate set of target weights: r + γmaxa′ Q̂(s ′, a′;w−)

Select all that are true

This doubles the computation time compared to a method that does
not have a separate set of weights

This doubles the memory requirements compared to a method that
does not have a separate set of weights

Not sure
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Check Your Understanding L4N3: Fixed Targets.
Solutions

In DQN we compute the target value for the sampled (s, a, r , s ′) using
a separate set of target weights: r + γmaxa′ Q̂(s ′, a′;w−)

Select all that are true

This doubles the computation time compared to a method that does
not have a separate set of weights

This doubles the memory requirements compared to a method that
does not have a separate set of weights

Not sure
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DQNs Summary

DQN uses experience replay and fixed Q-targets

Store transition (st , at , rt+1, st+1) in replay memory D
Sample random mini-batch of transitions (s, a, r , s ′) from D
Compute Q-learning targets w.r.t. old, fixed parameters w−

Optimizes MSE between Q-network and Q-learning targets

Uses stochastic gradient descent
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DQNs in Atari

End-to-end learning of values Q(s, a) from pixels s

Input state s is stack of raw pixels from last 4 frames

Output is Q(s, a) for 18 joystick/button positions

Reward is change in score for that step

Used a deep neural network with CNN

Network architecture and hyperparameters fixed across all games
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DQN

Figure: Human-level control through deep reinforcement learning, Mnih et al,
2015

Emma Brunskill (CS234 Reinforcement Learning. )Lecture 4: Model Free Control and Function ApproximationWinter 2024 68 / 85



DQN Results in Atari

Figure: Human-level control through deep reinforcement learning, Mnih et al,
2015
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Which Aspects of DQN were Important for Success?

Game Linear
Deep

Network

Breakout 3 3

Enduro 62 29

River Raid 2345 1453

Seaquest 656 275

Space
Invaders

301 302

Note: just using a deep NN actually hurt performance sometimes!
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Which Aspects of DQN were Important for Success?

Game Linear
Deep

Network
DQN w/
fixed Q

Breakout 3 3 10

Enduro 62 29 141

River Raid 2345 1453 2868

Seaquest 656 275 1003

Space
Invaders

301 302 373
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Which Aspects of DQN were Important for Success?

Game Linear
Deep

Network
DQN w/
fixed Q

DQN w/
replay

DQN w/replay
and fixed Q

Breakout 3 3 10 241 317

Enduro 62 29 141 831 1006

River Raid 2345 1453 2868 4102 7447

Seaquest 656 275 1003 823 2894

Space
Invaders

301 302 373 826 1089

Replay is hugely important

Why? Beyond helping with correlation between samples, what does
replaying do?
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Deep RL

Success in Atari has led to huge excitement in using deep neural
networks to do value function approximation in RL

Some immediate improvements (many others!)

Double DQN (Deep Reinforcement Learning with Double Q-Learning,
Van Hasselt et al, AAAI 2016)
Prioritized Replay (Prioritized Experience Replay, Schaul et al, ICLR
2016)
Dueling DQN (best paper ICML 2016) (Dueling Network Architectures
for Deep Reinforcement Learning, Wang et al, ICML 2016)
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What You Should Understand

Be able to implement TD(0) and MC on policy evaluation

Be able to implement Q-learning and SARSA and MC control
algorithms

List the 3 issues that can cause instability and describe the problems
qualitatively: function approximation, bootstrapping and off-policy
learning

Know some of the key features in DQN that were critical (experience
replay, fixed targets)
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Class Structure

Last time and start of this time: Model-free reinforcement learning
with function approximation

Next time: Policy gradients
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Monotonic ϵ-greedy Policy Improvement

Theorem

For any ϵ-greedy policy πi , the ϵ-greedy policy w.r.t. Qπi , πi+1 is a
monotonic improvement V πi+1 ≥ V πi

Therefore V πi+1 ≥ V π (from the policy improvement theorem)
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SARSA Initialization Conceptual Question

Mars rover with new actions:

r(−, a1) = [ 1 0 0 0 0 0 +10], r(−, a2) = [ 0 0 0 0 0 0 +5], γ = 1.

Initialize ϵ = 1/k , k = 1, and α = 0.5, Q(−, a1) = r(−, a1),
Q(−, a2) = r(−, a2)
SARSA: (s6, a1, 0, s7, a2, 5, s7).

Does how Q is initialized matter (initially? asymptotically?)?
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Optional Worked Example: MC for On Policy Control
Solution

Mars rover with new actions:

r(−, a1) = [ 1 0 0 0 0 0 +10], r(−, a2) = [ 0 0 0 0 0 0 +5], γ = 1.

Assume current greedy π(s) = a1 ∀s, ϵ=.5. Q(s, a) = 0 for all (s, a)

Sample trajectory from ϵ-greedy policy

Trajectory = (s3, a1, 0, s2, a2, 0, s3, a1, 0, s2, a2, 0, s1, a1, 1, terminal)

First visit MC estimate of Q of each (s, a) pair?

Qϵ−π(−, a1) = [1 0 1 0 0 0 0]

After this trajectory:

Qϵ−π(−, a2) = [0 1 0 0 0 0 0]

The new greedy policy would be: π = [1 2 1 tie tie tie tie]

If ϵ = 1/3, prob of selecting a1 in s1 in the new ϵ-greedy policy is 5/6.
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Optional Worked Example SARSA for Mars Rover

1: Set initial ϵ-greedy policy π, t = 0, initial state st = s0
2: Take at ∼ π(st) // Sample action from policy
3: Observe (rt , st+1)
4: loop
5: Take action at+1 ∼ π(st+1)
6: Observe (rt+1, st+2)
7: Q(st , at)← Q(st , at) + α(rt + γQ(st+1, at+1)− Q(st , at))
8: π(st) = argmaxa Q(st , a) w.prob 1− ϵ, else random
9: t = t + 1

10: end loop

Initialize ϵ = 1/k, k = 1, and α = 0.5, Q(−, a1) = [ 1 0 0 0 0 0 +10],
Q(−, a2) =[ 1 0 0 0 0 0 +5], γ = 1
Assume starting state is s6 and sample a1
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Worked Example: SARSA for Mars Rover

1: Set initial ϵ-greedy policy π, t = 0, initial state st = s0
2: Take at ∼ π(st) // Sample action from policy
3: Observe (rt , st+1)
4: loop
5: Take action at+1 ∼ π(st+1)
6: Observe (rt+1, st+2)
7: Q(st , at)← Q(st , at) + α(rt + γQ(st+1, at+1)− Q(st , at))
8: π(st) = argmaxa Q(st , a) w.prob 1− ϵ, else random
9: t = t + 1

10: end loop

Initialize ϵ = 1/k, k = 1, and α = 0.5, Q(−, a1) = [ 1 0 0 0 0 0 +10],
Q(−, a2) =[ 1 0 0 0 0 0 +5], γ = 1
Assume starting state is s6 and sample a1
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Worked Example: SARSA for Mars Rover

1: Set initial ϵ-greedy policy π, t = 0, initial state st = s0
2: Take at ∼ π(st) // Sample action from policy
3: Observe (rt , st+1)
4: loop
5: Take action at+1 ∼ π(st+1)
6: Observe (rt+1, st+2)
7: Q(st , at)← Q(st , at) + α(rt + γQ(st+1, at+1)− Q(st , at))
8: π(st) = argmaxa Q(st , a) w.prob 1− ϵ, else random
9: t = t + 1

10: end loop

Initialize ϵ = 1/k, k = 1, and α = 0.5, Q(−, a1) = [ 1 0 0 0 0 0 +10],
Q(−, a2) =[ 1 0 0 0 0 0 +5], γ = 1
Tuple: (s6, a1, 0, s7, a2, 5, s7).
Q(s6, a1) = .5 ∗ 0 + .5 ∗ (0 + γQ(s7, a2)) = 2.5
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Worked Example: ϵ-greedy Q-Learning Mars

1: Initialize Q(s, a),∀s ∈ S , a ∈ A t = 0, initial state st = s0
2: Set πb to be ϵ-greedy w.r.t. Q
3: loop
4: Take at ∼ πb(st) // Sample action from policy
5: Observe (rt , st+1)
6: Q(st , at)← Q(st , at) + α(rt + γmaxa Q(st+1, a)− Q(st , at))
7: π(st) = argmaxa Q(st , a) w.prob 1− ϵ, else random
8: t = t + 1
9: end loop

Initialize ϵ = 1/k, k = 1, and α = 0.5, Q(−, a1) = [ 1 0 0 0 0 0 +10],
Q(−, a2) =[ 1 0 0 0 0 0 +5], γ = 1
Like in SARSA example, start in s6 and take a1.
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Worked Example: ϵ-greedy Q-Learning Mars

1: Initialize Q(s, a),∀s ∈ S , a ∈ A t = 0, initial state st = s0
2: Set πb to be ϵ-greedy w.r.t. Q
3: loop
4: Take at ∼ πb(st) // Sample action from policy
5: Observe (rt , st+1)
6: Q(st , at)← Q(st , at) + α(rt + γmaxa Q(st+1, a)− Q(st , at))
7: π(st) = argmaxa Q(st , a) w.prob 1− ϵ, else random
8: t = t + 1
9: end loop

Initialize ϵ = 1/k, k = 1, and α = 0.5, Q(−, a1) = [ 1 0 0 0 0 0 +10],
Q(−, a2) =[ 1 0 0 0 0 0 +5], γ = 1
Tuple: (s6, a1, 0, s7).
Q(s6, a1) = 0 + .5 ∗ (0 + γmaxa′ Q(s7, a

′)− 0) = .5*10 = 5
Recall that in the SARSA update we saw Q(s6, a1) = 2.5 because we used
the actual action taken at s7 instead of the max
Does how Q is initialized matter (initially? asymptotically?)?
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Optional Check Your Understanding L4: SARSA and
Q-Learning

SARSA: Q(st , at)← Q(st , at) + α(rt + γQ(st+1, at+1)− Q(st , at))

Q-Learning:
Q(st , at)← Q(st , at) + α(rt + γmaxa′ Q(st+1, a

′)− Q(st , at))

Select all that are true

1 Both SARSA and Q-learning may update their policy after every step

2 If ϵ = 0 for all time steps, and Q is initialized randomly, a SARSA Q
state update will be the same as a Q-learning Q state update

3 Not sure
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Optional Check Your Understanding SARSA and
Q-Learning Solutions

SARSA: Q(st , at)← Q(st , at) + α(rt + γQ(st+1, at+1)− Q(st , at))

Q-Learning:
Q(st , at)← Q(st , at) + α(rt + γmaxa′ Q(st+1, a

′)− Q(st , at))

Select all that are true

1 Both SARSA and Q-learning may update their policy after every step

2 If ϵ = 0 for all time steps, and Q is initialized randomly, a SARSA Q
state update will be the same as a Q-learning Q state update

3 Not sure
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