Lecture 3: Model-Free Policy Evaluation: Policy Evaluation Without Knowing How the World Works

Emma Brunskill

CS234 Reinforcement Learning

Spring 2024

 Material builds on structure from David Silver's Lecture 4: Model-Free Prediction. Other resources: Sutton and Barto Jan 1 2018 draft Chapter/Sections: 5.1; 5.5; 6.1-6.3

L3N1 Refresh Your Knowledge [Polleverywhere Poll]

- In a tabular MDP asymptotically value iteration will always yield a policy with the same value as the policy returned by policy iteration
 - True.
 - Palse
 - Not sure
- Can value iteration require more iterations than $|A|^{|S|}$ to compute the optimal value function? (Assume |A| and |S| are small enough that each round of value iteration can be done exactly).
 - True.
 - Palse
 - Not sure

L3N1 Refresh Your Knowledge

• In a tabular MDP asymptotically value iteration will always yield a policy with the same value as the policy returned by policy iteration

• Can value iteration require more iterations than $|A|^{|S|}$ to compute the optimal value function? (Assume |A| and |S| are small enough that each round of value iteration can be done exactly).

Today's Plan

- Last Time:
 - Markov reward / decision processes
 - Policy evaluation & control when have true model (of how the world works)
- Today
 - Policy evaluation without known dynamics & reward models
- Next Time:
 - Control when don't have a model of how the world works

Evaluation through Direct Experience

- ullet Estimate expected return of policy π
- Only using data from environment¹ (direct experience)
- Why is this important?
- What properties do we want from policy evaluation algorithms?

 $^{^1}$ Assume today this experience comes from executing the policy π . Later will consider how to do policy evaluation using data gathered from other policies.

This Lecture: Policy Evaluation

- Estimating the expected return of a particular policy if don't have access to true MDP models
- Monte Carlo policy evaluation
 - Policy evaluation when don't have a model of how the world works
 - Given on-policy samples
- Temporal Difference (TD)
- Certainty Equivalence with dynamic programming
- Batch policy evaluation

Recall

- Definition of Return, G_t (for a MRP)
 - Discounted sum of rewards from time step t to horizon

$$G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$$

- Definition of State Value Function, $V^{\pi}(s)$
 - Expected return starting in state s under policy π

$$V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s] = \mathbb{E}_{\pi}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots |s_t = s]$$

- Definition of State-Action Value Function, $Q^{\pi}(s, a)$
 - ullet Expected return starting in state s, taking action a and following policy π

$$Q^{\pi}(s, a) = \mathbb{E}_{\pi}[G_t | s_t = s, a_t = a]$$

= $\mathbb{E}_{\pi}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots | s_t = s, a_t = a]$

Recall: Dynamic Programming for Policy Evaluation

In a Markov decision process

$$V^{\pi}(s) = \mathbb{E}_{\pi}[G_{t}|s_{t} = s]$$

$$= \mathbb{E}_{\pi}[r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+2} + \gamma^{3} r_{t+3} + \cdots | s_{t} = s]$$

$$= R(s, \pi(s)) + \gamma \sum_{s' \in S} P(s'|s, \pi(s)) V^{\pi}(s')$$

 If given dynamics and reward models, can do policy evaluation through dynamic programming

$$V_k^{\pi}(s) = r(s, \pi(s)) + \gamma \sum_{s' \in S} p(s'|s, \pi(s)) V_{k-1}^{\pi}(s')$$
 (1)

- **Note**: before convergence, V_k^{π} is an estimate of V^{π}
- In Equation 1 we are substituting $\sum_{s' \in S} p(s'|s, \pi(s)) V_{k-1}^{\pi}(s')$ for $\mathbb{E}_{\pi}[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots | s_t = s]$.
- This substitution is an instance of bootstrapping

This Lecture: Policy Evaluation

- Estimating the expected return of a particular policy if don't have access to true MDP models
- Monte Carlo policy evaluation
 - Policy evaluation when don't have a model of how the world work
 - Given on-policy samples
- Temporal Difference (TD)
- Certainty Equivalence with dynamic programming
- Batch policy evaluation

Monte Carlo (MC) Policy Evaluation

- $G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots + \gamma^{T_i t} r_{T_i}$ in MDP M under policy π
- $V^{\pi}(s) = \mathbb{E}_{\tau \sim \pi}[G_t | s_t = s]$
 - Expectation over trajectories au generated by following π
- Simple idea: Value = mean return
- If trajectories are all finite, sample set of trajectories & average returns
- Note: all trajectories may not be same length (e.g. consider MDP with terminal states)

Monte Carlo (MC) Policy Evaluation

- If trajectories are all finite, sample set of trajectories & average returns
- Does not require MDP dynamics/rewards
- Does not assume state is Markov
- Can be applied to episodic MDPs
 - Averaging over returns from a complete episode
 - Requires each episode to terminate

First-Visit Monte Carlo (MC) On Policy Evaluation

Initialize
$$N(s)=0$$
, $G(s)=0$ $\forall s\in S$ Loop

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}, a_{i,T_i}, r_{i,T_i}$
- Define $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots + \gamma^{T_i-1} r_{i,T_i}$ as return from time step t onwards in ith episode
- For each time step t until T_i (the end of the episode i)
 - If this is the **first** time t that state s is visited in episode i
 - Increment counter of total first visits: N(s) = N(s) + 1
 - Increment total return $G(s) = G(s) + G_{i,t}$
 - Update estimate $V^{\pi}(s) = G(s)/N(s)$

Every-Visit Monte Carlo (MC) On Policy Evaluation

Initialize
$$N(s)=0$$
, $G(s)=0$ $\forall s\in S$ Loop

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}, a_{i,T_i}, r_{i,T_i}$
- Define $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots + \gamma^{T_i-1} r_{i,T_i}$ as return from time step t onwards in ith episode
- For each time step t until T_i (the end of the episode i)
 - state s is the state visited at time step t in episodes i
 - Increment counter of total visits: N(s) = N(s) + 1
 - Increment total return $G(s) = G(s) + G_{i,t}$
 - Update estimate $V^{\pi}(s) = G(s)/N(s)$

Optional Worked Example: MC On Policy Evaluation

Initialize
$$N(s)=0$$
, $G(s)=0$ $\forall s\in S$ Loop

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}, a_{i,T_i}, r_{i,T_i}$
- $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots \gamma^{T_i-1} r_{i,T_i}$
- For each time step t until T_i (the end of the episode i)
 - If this is the **first** time *t* that state *s* is visited in episode *i* (for first visit MC)
 - Increment counter of total first visits: N(s) = N(s) + 1
 - Increment total return $G(s) = G(s) + G_{i,t}$
 - Update estimate $V^{\pi}(s) = G(s)/N(s)$
- Mars rover: R(s) = [10000+10]
- Trajectory = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, terminal)$
- Let $\gamma < 1$. Compute the first visit & every visit MC estimates of s_2 .
- See solutions at the end of the slides

Incremental Monte Carlo (MC) On Policy Evaluation

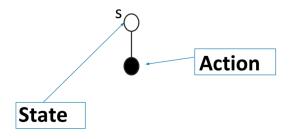
After each episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots$

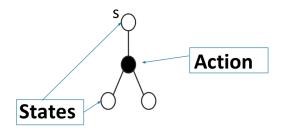
- Define $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots$ as return from time step t onwards in ith episode
- For state s visited at time step t in episode i
 - Increment counter of total visits: N(s) = N(s) + 1
 - Update estimate

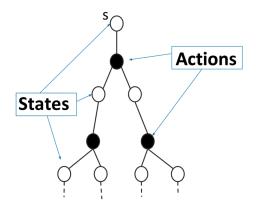
$$V^{\pi}(s) = V^{\pi}(s) \frac{N(s) - 1}{N(s)} + \frac{G_{i,t}}{N(s)} = V^{\pi}(s) + \frac{1}{N(s)} (G_{i,t} - V^{\pi}(s))$$

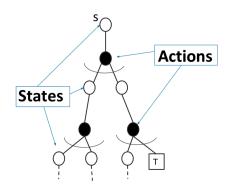
Incremental Monte Carlo (MC) On Policy Evaluation

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}, a_{i,T_i}, r_{i,T_i}$
- $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots \gamma^{T_i-1} r_{i,T_i}$
- for t = 1: T_i where T_i is the length of the i-th episode
 - $V^{\pi}(s_{it}) = V^{\pi}(s_{it}) + \alpha(G_{i,t} V^{\pi}(s_{it}))$
- We will see many algorithms of this form with a learning rate, target, and incremental update







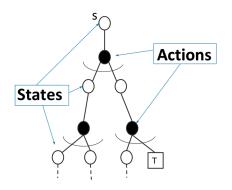


= Expectation

= Terminal state

MC Policy Evaluation

$$V^{\pi}(s) = V^{\pi}(s) + \alpha(G_{i,t} - V^{\pi}(s))$$

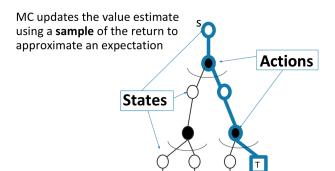


= Expectation

⊤ = Terminal state

MC Policy Evaluation

$$V^{\pi}(s) = V^{\pi}(s) + \alpha(G_{i,t} - V^{\pi}(s))$$



- = Expectation
 - **□** = Terminal state

Evaluation of the Quality of a Policy Estimation Approach

- Consistency: with enough data, does the estimate converge to the true value of the policy?
- Computational complexity: as get more data, computational cost of updating estimate
- Memory requirements
- Statistical efficiency (intuitively, how does the accuracy of the estimate change with the amount of data)
- Empirical accuracy, often evaluated by mean squared error

Evaluation of the Quality of a Policy Estimation Approach: Bias, Variance and MSE

- Consider a statistical model that is parameterized by θ and that determines a probability distribution over observed data $P(x|\theta)$
- Onsider a statistic $\hat{\theta}$ that provides an estimate of θ and is a function of observed data x
 - E.g. for a Gaussian distribution with known variance, the average of a set of i.i.d data points is an estimate of the mean of the Gaussian
- Definition: the bias of an estimator $\hat{\theta}$ is:

$$\mathit{Bias}_{ heta}(\hat{ heta}) = \mathbb{E}_{\mathsf{x}| heta}[\hat{ heta}] - heta$$

• Definition: the variance of an estimator $\hat{\theta}$ is:

$$Var(\hat{\theta}) = \mathbb{E}_{x|\theta}[(\hat{\theta} - \mathbb{E}[\hat{\theta}])^2]$$

• Definition: mean squared error (MSE) of an estimator $\hat{\theta}$ is:

$$MSE(\hat{\theta}) = Var(\hat{\theta}) + Bias_{\theta}(\hat{\theta})^{2}$$

Evaluation of the Quality of a Policy Estimation Approach: Consistent Estimator

- Consider a statistical model that is parameterized by θ and that determines a probability distribution over observed data $P(x|\theta)$
- \bullet Consider a statistic $\hat{\theta}$ that provides an estimate of θ and is a function of observed data x
- Definition: the bias of an estimator $\hat{\theta}$ is:

$$\mathit{Bias}_{ heta}(\hat{ heta}) = \mathbb{E}_{\mathsf{x}| heta}[\hat{ heta}] - heta$$

- Let n be the number of data points x used to estimate the parameter θ and call the resulting estimate of θ using that data $\hat{\theta}_n$
- Then the estimator $\hat{\theta}_n$ is consistent if, for all $\epsilon > 0$

$$\lim_{n\to\infty} \Pr(|\hat{\theta}_n - \theta| > \epsilon) = 0$$

• If an estimator is unbiased (bias = 0) is it consistent?

Properties of Monte Carlo On Policy Evaluators

Properties:

- First-visit Monte Carlo
 - ullet V^{π} estimator is an unbiased estimator of true $\mathbb{E}_{\pi}[G_t|s_t=s]$
 - ullet By law of large numbers, as $N(s) o \infty$, $V^\pi(s) o \mathbb{E}_\pi[G_t | s_t = s]$
- Every-visit Monte Carlo
 - ullet V^{π} every-visit MC estimator is a **biased** estimator of V^{π}
 - But consistent estimator and often has better MSE
- Incremental Monte Carlo
 - ullet Properties depends on the learning rate lpha

Properties of Monte Carlo On Policy Evaluators

- Update is: $V^{\pi}(s_{it}) = V^{\pi}(s_{it}) + \alpha_k(s_j)(G_{i,t} V^{\pi}(s_{it}))$
- where we have allowed α to vary (let k be the total number of updates done so far, for state $s_{it} = s_i$)
- If

$$\sum_{n=1}^{\infty} \alpha_n(s_j) = \infty,$$

$$\sum_{n=1}^{\infty} \alpha_n^2(s_j) < \infty$$

• then incremental MC estimate will converge to true policy value $V^{\pi}(s_i)$

Monte Carlo (MC) Policy Evaluation Key Limitations

- Generally high variance estimator
 - Reducing variance can require a lot of data
 - In cases where data is very hard or expensive to acquire, or the stakes are high, MC may be impractical
- Requires episodic settings
 - ullet Episode must end before data from episode can be used to update V

Monte Carlo (MC) Policy Evaluation Summary

- ullet Aim: estimate $V^\pi(s)$ given episodes generated under policy π
 - $s_1, a_1, r_1, s_2, a_2, r_2, \ldots$ where the actions are sampled from π
- $G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$ under policy π
- $V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s]$
- Simple: Estimates expectation by empirical average (given episodes sampled from policy of interest)
- ullet Updates V estimate using **sample** of return to approximate the expectation
- Does not assume Markov process
- Converges to true value under some (generally mild) assumptions
- **Note:** Sometimes is preferred over dynamic programming for policy evaluation *even if know the true dynamics model and reward*

This Lecture: Policy Evaluation

- Estimating the expected return of a particular policy if don't have access to true MDP models
- Monte Carlo policy evaluation
- Temporal Difference (TD)
- Certainty Equivalence with dynamic programming
- Batch policy evaluation

Temporal Difference Learning

- "If one had to identify one idea as central and novel to reinforcement learning, it would undoubtedly be temporal-difference (TD) learning." – Sutton and Barto 2017
- Combination of Monte Carlo & dynamic programming methods
- Model-free
- Can be used in episodic or infinite-horizon non-episodic settings
- ullet Immediately updates estimate of V after each (s,a,r,s') tuple

Temporal Difference Learning for Estimating V

- Aim: estimate $V^{\pi}(s)$ given episodes generated under policy π
- $G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$ in MDP M under policy π
- $V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s]$
- Recall Bellman operator (if know MDP models)

$$B^{\pi}V(s) = r(s,\pi(s)) + \gamma \sum_{s' \in S} p(s'|s,\pi(s))V(s')$$

• In incremental every-visit MC, update estimate using 1 sample of return (for the current *i*th episode)

$$V^{\pi}(s) = V^{\pi}(s) + \alpha(G_{i,t} - V^{\pi}(s))$$

• Idea: have an estimate of V^{π} , use to estimate expected return

$$V^{\pi}(s) = V^{\pi}(s) + \alpha([r_t + \gamma V^{\pi}(s_{t+1})] - V^{\pi}(s))$$

◆ロト ◆卸 ト ◆ 恵 ト ◆ 恵 ・ り へ ②

Temporal Difference [TD(0)] Learning

- Aim: estimate $V^{\pi}(s)$ given episodes generated under policy π
 - $s_1, a_1, r_1, s_2, a_2, r_2, \dots$ where the actions are sampled from π
- TD(0) learning / 1-step TD learning: update estimate towards target

$$V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} - V^{\pi}(s_t))$$

• TD(0) error:

$$\delta_t = r_t + \gamma V^{\pi}(s_{t+1}) - V^{\pi}(s_t)$$

- Can immediately update value estimate after (s, a, r, s') tuple
- Don't need episodic setting

Temporal Difference [TD(0)] Learning Algorithm

Input:
$$\alpha$$

Initialize $V^{\pi}(s)=0$, $\forall s \in S$
Loop

- Sample **tuple** (s_t, a_t, r_t, s_{t+1})
- $V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} V^{\pi}(s_t))$

Worked Example TD Learning

Input: α Initialize $V^{\pi}(s) = 0$, $\forall s \in S$ Loop

- Sample **tuple** (s_t, a_t, r_t, s_{t+1})
- $V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} V^{\pi}(s_t))$

Example Mars rover: R = [100001+10] for any action

- $\pi(s) = a_1 \ \forall s, \ \gamma = 1$. any action from s_1 and s_7 terminates episode
- Trajectory = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, terminal)$

Worked Example TD Learning

Input: α Initialize $V^{\pi}(s)=0$, $\forall s\in S$ Loop

- Sample **tuple** (s_t, a_t, r_t, s_{t+1})
- $V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} V^{\pi}(s_t))$

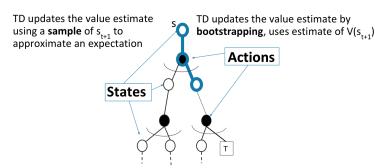
Example:

- Mars rover: R = [100000+10] for any action
- $\pi(s) = a_1 \ \forall s, \ \gamma = 1$. any action from s_1 and s_7 terminates episode
- Trajectory = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, terminal)$
- TD estimate of all states (init at 0) with $\alpha=1,\ \gamma<1$ at end of this episode?

 \bullet First visit MC estimate of V of each state? [1 γ γ^2 0 0 0 0]

Temporal Difference (TD) Policy Evaluation

$$V^{\pi}(s_t) = r(s_t, \pi(s_t)) + \gamma \sum_{s_{t+1}} P(s_{t+1}|s_t, \pi(s_t)) V^{\pi}(s_{t+1})$$
$$V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha([r_t + \gamma V^{\pi}(s_{t+1})] - V^{\pi}(s_t))$$



= Expectation

□ = Terminal state

Check Your Understanding L3N2: Polleverywhere Poll Temporal Difference [TD(0)] Learning Algorithm

Input: α Initialize $V^{\pi}(s)=0$, $\forall s \in S$ Loop

- Sample **tuple** (s_t, a_t, r_t, s_{t+1})
- $V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} V^{\pi}(s_t))$

Select all that are true

- ① If $\alpha = 0$ TD will weigh the TD target more than the past V estimate
- ② If $\alpha = 1$ TD will update the V estimate to the TD target
- 3 If $\alpha=1$ TD in MDPs where the policy goes through states with multiple possible next states, V may oscillate forever
- **1** There exist deterministic MDPs where $\alpha = 1$ TD will converge

Check Your Understanding L3N2: Polleverywhere Poll Temporal Difference [TD(0)] Learning Algorithm

Input:
$$\alpha$$

Initialize $V^{\pi}(s)=0$, $\forall s \in S$
Loop

- Sample **tuple** (s_t, a_t, r_t, s_{t+1})
- $V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} V^{\pi}(s_t))$

Summary: Temporal Difference Learning

- Combination of Monte Carlo & dynamic programming methods
- Model-free
- Bootstraps and samples
- Can be used in episodic or infinite-horizon non-episodic settings
- Immediately updates estimate of V after each (s, a, r, s') tuple
- Biased estimator (early on will be influenced by initialization, and won't be unibased estimator)
- Generally lower variance than Monte Carlo policy evaluation
- ullet Consistent estimator if learning rate lpha satisfies same conditions specified for incremental MC policy evaluation to converge
- Note: algorithm I introduced is TD(0). In general can have approaches that interpolate between TD(0) and Monte Carlo approach

This Lecture: Policy Evaluation

- Estimating the expected return of a particular policy if don't have access to true MDP models
- Monte Carlo policy evaluation
- Temporal Difference (TD)
- Certainty Equivalence with dynamic programming
- Batch policy evaluation

Certainty Equivalence V^{π} MLE MDP Model Estimates

- Model-based option for policy evaluation without true models
- After each (s_i, a_i, r_i, s_{i+1}) tuple
 - Recompute maximum likelihood MDP model for (s, a)

$$\hat{P}(s'|s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{i} \mathbb{1}(s_k = s, a_k = a, s_{k+1} = s')$$

$$\hat{r}(s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{r} \mathbb{1}(s_k = s, a_k = a) r_k$$

- Compute V^{π} using MLE MDP 2 (using any dynamic programming method from lecture 2))
- Optional worked example at end of slides for Mars rover domain.

²Requires initializing for all (s, a) pairs

Certainty Equivalence V^{π} MLE MDP Model Estimates

- Model-based option for policy evaluation without true models
- After each (s, a, r, s') tuple
 - Recompute maximum likelihood MDP model for (s, a)

$$\hat{P}(s'|s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{T_k-1} 1(s_{k,t} = s, a_{k,t} = a, s_{k,t+1} = s')$$

$$\hat{r}(s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{T_k-1} 1(s_{k,t} = s, a_{k,t} = a) r_{t,k}$$

- Compute V^{π} using MLE MDP
- Cost: Updating MLE model and MDP planning at each update $(O(|S|^3))$ for analytic matrix solution, $O(|S|^2|A|)$ for iterative methods)
- Very data efficient and very computationally expensive
- Consistent (will converge to right estimate for Markov models)
- Can also easily be used for off-policy evaluation (which we will shortly define and discuss)

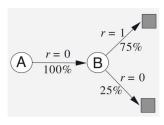
This Lecture: Policy Evaluation

- Estimating the expected return of a particular policy if don't have access to true MDP models
- Monte Carlo policy evaluation
 - Policy evaluation when don't have a model of how the world work
 - Given on-policy samples
- Temporal Difference (TD)
- Certainty Equivalence with dynamic programming
- Batch policy evaluation

Batch MC and TD

- Batch (Offline) solution for finite dataset
 - Given set of *K* episodes
 - ullet Repeatedly sample an episode from K
 - ullet Apply MC or TD(0) to the sampled episode
- What do MC and TD(0) converge to?

AB Example: (Ex. 6.4, Sutton & Barto, 2018)



- Two states A, B with $\gamma = 1$
- Given 8 episodes of experience:
 - A, 0, B, 0
 - B, 1 (observed 6 times)
 - B, 0
- Imagine running TD updates over data infinite number of times
- V(B) =

AB Example: (Ex. 6.4, Sutton & Barto, 2018)

• TD Update:
$$V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} - V^{\pi}(s_t))$$

- Two states A, B with $\gamma = 1$
- Given 8 episodes of experience:
 - A, 0, B, 0
 - B,1 (observed 6 times)
 - B, 0
- Imagine run TD updates over data infinite number of times
- V(B) = 0.75 by TD or MC
- What about V(A)?

Check Your Understanding L3N3: AB Example: (Ex. 6.4, Sutton & Barto, 2018)

• TD Update:
$$V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{ ext{TD target}} - V^{\pi}(s_t))$$

- Two states A, B with $\gamma = 1$
- Given 8 episodes of experience:
 - A, 0, B, 0
 - B,1 (observed 6 times)
 - B, 0
- Imagine run TD updates over data infinite number of times
- V(B) = 0.75 by TD or MC
- What about V(A)?
- Respond in Poll

Check Your Understanding L3N3: AB Example: (Ex. 6.4, Sutton & Barto, 2018)

• TD Update:
$$V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} - V^{\pi}(s_t))$$

- Two states A, B with $\gamma = 1$
- Given 8 episodes of experience:
 - A, 0, B, 0
 - B, 1 (observed 6 times)
 - B, 0
- Imagine run TD updates over data infinite number of times
- V(B) = 0.75 by TD or MC
- What about V(A)?

Batch MC and TD: Convergence

- Monte Carlo in batch setting converges to min MSE (mean squared error)
 - Minimize loss with respect to observed returns
 - In AB example, V(A) = 0
- ullet TD(0) converges to DP policy V^π for the MDP with the maximum likelihood model estimates
- Aka same as dynamic programming with certainty equivalence!
 - Maximum likelihood Markov decision process model

$$\hat{P}(s'|s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{i} \mathbb{1}(s_k = s, a_k = a, s_{k+1} = s')$$

$$\hat{r}(s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{i} \mathbb{1}(s_k = s, a_k = a) r_k$$

- Compute V^{π} using this model
- In AB example, V(A) = 0.75

Some Important Properties to Evaluate Model-free Policy Evaluation Algorithms

- Data efficiency & Computational efficiency
- In simple TD(0), use (s, a, r, s') once to update V(s)
 - O(1) operation per update
 - In an episode of length L, O(L)
- In MC have to wait till episode finishes, then also O(L)
- MC can be more data efficient than simple TD
- But TD exploits Markov structure
 - If in Markov domain, leveraging this is helpful
- Dynamic programming with certainty equivalence also uses Markov structure

Summary: Policy Evaluation

Estimating the expected return of a particular policy if don't have access to true MDP models. Ex. evaluating average purchases per session of new product recommendation system

- Monte Carlo policy evaluation
 - Policy evaluation when we don't have a model of how the world works
 - Given on policy samples
 - Given off policy samples
- Temporal Difference (TD)
- Dynamic Programming with certainty equivalence
- *Understand what MC vs TD methods compute in batch evaluations
- Metrics / Qualities to evaluate and compare algorithms
 - Uses Markov assumption
 - Accuracy / MSE / bias / variance
 - Data efficiency
 - Computational efficiency

Today's Plan

- Last Time:
 - Markov reward / decision processes
 - Policy evaluation & control when have true model (of how the world works)
- Today
 - Policy evaluation without known dynamics & reward models
- Next Time:
 - Control when don't have a model of how the world works

Optional Worked Example MC On Policy Evaluation Answers

Initialize
$$N(s)=0$$
, $G(s)=0$ $\forall s\in S$ Loop

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}, a_{i,T_i}, r_{i,T_i}$
- $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots \gamma^{T_i-1} r_{i,T_i}$
- For each time step t until T_i (the end of the episode i)
 - If this is the **first** time t that state s is visited in episode i
 - Increment counter of total first visits: N(s) = N(s) + 1
 - Increment total return $G(s) = G(s) + G_{i,t}$
 - Update estimate $V^{\pi}(s) = G(s)/N(s)$
- \bullet Mars rover: R = [1 0 0 0 0 0 +10] for any action
- Trajectory = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, terminal)$
- Let $\gamma < 1$. Compare the first visit & every visit MC estimates of s_2 .

Optional Check Your Understanding L3: Incremental MC (State if each is True or False)

First or Every Visit MC

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}, a_{i,T_i}, r_{i,T_i}$
- $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots \gamma^{T_i-1} r_{i,T_i}$
 - For all s, for **first or every** time t that state s is visited in episode i
 - N(s) = N(s) + 1, $G(s) = G(s) + G_{i,t}$
 - Update estimate $V^{\pi}(s) = G(s)/N(s)$

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}, a_{i,T_i}, r_{i,T_i}$
- $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots \gamma^{T_i-1} r_{i,T_i}$
- for $t = 1 : T_i$ where T_i is the length of the *i*-th episode
 - $V^{\pi}(s_{it}) = V^{\pi}(s_{it}) + \alpha(G_{i,t} V^{\pi}(s_{it}))$
- 1 Incremental MC with $\alpha=1$ is the same as first visit MC
- 2 Incremental MC with $\alpha = \frac{1}{N(s_{it})}$ is the same as every visit MC
- 3 Incremental MC with $\alpha>\frac{1}{N(s_{it})}$ could be helpful in non-stationary domains

Optional Check Your Understanding L3 Incremental MC Answers

First or Every Visit MC

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}, a_{i,T_i}, r_{i,T_i}$
- $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots \gamma^{T_i-1} r_{i,T_i}$
 - For all s, for first or every time t that state s is visited in episode i
 - N(s) = N(s) + 1, $G(s) = G(s) + G_{i,t}$
 - Update estimate $V^{\pi}(s) = G(s)/N(s)$

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}, a_{i,T_i}, r_{i,T_i}$
- for $t = 1 : T_i$ where T_i is the length of the *i*-th episode
 - $V^{\pi}(s_{it}) = V^{\pi}(s_{it}) + \alpha(G_{i,t} V^{\pi}(s_{it}))$
- 1 Incremental MC with $\alpha=1$ is the same as first visit MC
- 2 Incremental MC with $\alpha = \frac{1}{N(s_{it})}$ is the same as every visit MC
- $oxed{3}$ Incremental MC with $lpha>rac{1}{N(s_{it})}$ could help in non-stationary domains

Optional Check Your Understanding L3 Incremental MC (State if each is True or False)

First or Every Visit MC

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}, a_{i,T_i}, r_{i,T_i}$
- $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots \gamma^{T_i-1} r_{i,T_i}$
 - For all s, for **first or every** time t that state s is visited in episode i
 - N(s) = N(s) + 1, $G(s) = G(s) + G_{i,t}$
 - Update estimate $V^{\pi}(s) = G(s)/N(s)$

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}, a_{i,T_i}, r_{i,T_i}$
- $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots \gamma^{T_i-1} r_{i,T_i}$
- for $t = 1 : T_i$ where T_i is the length of the *i*-th episode
 - $V^{\pi}(s_{it}) = V^{\pi}(s_{it}) + \alpha(G_{i,t} V^{\pi}(s_{it}))$
- 1 Incremental MC with $\alpha=1$ is the same as first visit MC
- 2 Incremental MC with $\alpha = \frac{1}{N(s_{it})}$ is the same as every visit MC
- 3 Incremental MC with $\alpha>\frac{1}{N(s_{ir})}$ could be helpful in non-stationary domains

Check Your Understanding L3N1: Polleverywhere Poll Incremental MC Answers

First or Every Visit MC

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}, a_{i,T_i}, r_{i,T_i}$
- $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots \gamma^{T_i-1} r_{i,T_i}$
 - For all s, for first or every time t that state s is visited in episode i
 - N(s) = N(s) + 1, $G(s) = G(s) + G_{i,t}$
 - Update estimate $V^{\pi}(s) = G(s)/N(s)$

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}, a_{i,T_i}, r_{i,T_i}$
- for t = 1: T_i where T_i is the length of the *i*-th episode
 - $V^{\pi}(s_{it}) = V^{\pi}(s_{it}) + \alpha(G_{i,t} V^{\pi}(s_{it}))$
- 1 Incremental MC with $\alpha=1$ is the same as first visit MC
- 2 Incremental MC with $\alpha = \frac{1}{N(s_{ir})}$ is the same as every visit MC
- $oldsymbol{0}$ Incremental MC with $lpha>rac{1}{N(s_{it})}$ could help in non-stationary domains

Certainty Equivalence V^{π} MLE MDP Worked Example

s_1	s_2	S ₃	s_4	s ₅	s ₆	S ₇
R(s ₁) = +1 Okay Field Site		$R(s_3) = 0$	$R(s_4) = 0$	$R(s_5) = 0$		R(s ₇) = +10 Fantastic Field Site

- Mars rover: R = [100000+10] for any action
- $\pi(s) = a_1 \ \forall s, \ \gamma = 1$. any action from s_1 and s_7 terminates episode
- Trajectory = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, terminal)$
- \bullet First visit MC estimate of V of each state? [1 γ γ^2 0 0 0 0]
- ullet TD estimate of all states (init at 0) with lpha=1 is $[1\ 0\ 0\ 0\ 0\ 0]$
- Optional exercise: What is the certainty equivalent estimate?

Certainty Equivalence V^{π} MLE MDP Worked Ex Solution

	s_1	s_2	S ₃	s_4	S ₅	S ₆	S7
Т	R(s _i) = +1 Okay Field Site	$R(s_2)=0$	$R(s_3)=0$	$R(s_4) = 0$	$R(s_S) = 0$		R(s ₇) = +10 Fantastic Field Site

- Mars rover: $R = [1 \ 0 \ 0 \ 0 \ 0 \ +10]$ for any action
- $\pi(s) = a_1 \ \forall s, \ \gamma = 1$. any action from s_1 and s_7 terminates episode
- Trajectory = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, terminal)$
- \bullet First visit MC estimate of V of each state? [1 γ γ^2 0 0 0 0]
- ullet TD estimate of all states (init at 0) with lpha=1 is [1 0 0 0 0 0 0]
- Optional exercise: What is the certainty equivalent estimate?
- $\hat{r} = [1 \ 0 \ 0 \ 0 \ 0 \ 0], \ \hat{p}(terminate|s_1, a_1) = \hat{p}(s_2|s_3, a_1) = 1$

Recall: Dynamic Programming for Policy Evaluation

- If we knew dynamics and reward model, we can do policy evaluation
- Initialize $V_0^{\pi}(s) = 0$ for all s
- For k = 1 until convergence
 - For all s in S

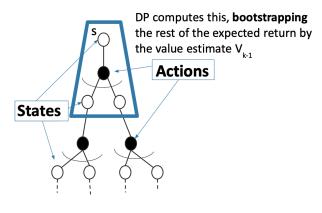
$$V_k^{\pi}(s) = r(s, \pi(s)) + \gamma \sum_{s' \in S} p(s'|s, \pi(s)) V_{k-1}^{\pi}(s')$$

- $V_k^{\pi}(s)$ is exactly the *k*-horizon value of state *s* under policy π
- $V_k^{\pi}(s)$ is an **estimate of the infinite horizon** value of state s under policy π

$$V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s] \approx \mathbb{E}_{\pi}[r_t + \gamma V_{k-1}|s_t = s]$$

Dynamic Programming Policy Evaluation

$$V^{\pi}(s) \leftarrow \mathbb{E}_{\pi}[r_t + \gamma V_{k-1} | s_t = s]$$

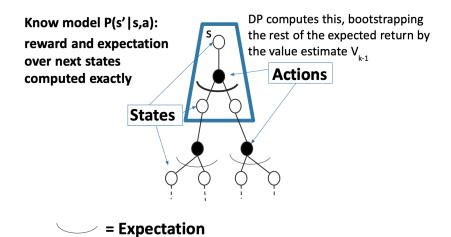


= Expectation

ullet Bootstrapping: Update for V uses an estimate

Dynamic Programming Policy Evaluation

$$V^{\pi}(s) \leftarrow \mathbb{E}_{\pi}[r_t + \gamma V_{k-1} | s_t = s]$$

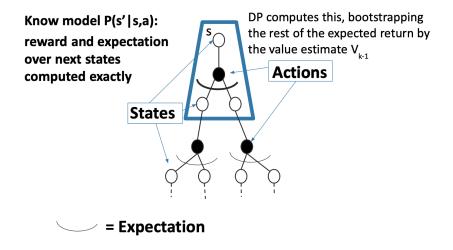


Bootstrapping: Update for V uses an estimate

Spring 2024

63 / 67

What about when we don't know the models?



s_1	s_2	s_3	S_4	s_5	s ₆	s_7
$R(s_1) = +1$ Okay $Field\ Site$		$R(s_3)=0$	$R(s_4) = 0$	$R(s_5)=0$		R(s ₇) = +10 Fantastic Field Site

- Mars rover: R = [100000+10] for any action
- $\pi(s) = a_1 \ \forall s, \ \gamma = 1$. any action from s_1 and s_7 terminates episode
- Trajectory = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, terminal)$
- \bullet First visit MC estimate of V of each state? [1 γ γ^2 0 0 0 0]
- TD estimate of all states (init at 0) with $\alpha = 1$ is $[1\ 0\ 0\ 0\ 0\ 0]$
- What is the certainty equivalent estimate?
- $\hat{r} = [1 \ 0 \ 0 \ 0 \ 0 \ 0], \ \hat{p}(terminate|s_1, a_1) = \hat{p}(s_2|s_3, a_1) = 1$
- $\hat{p}(s_1|s_2, a_1) = .5$, $\hat{p}(s_2|s_2, a_1) = .5$, $V = [1 \ 1 \ 1 \ 0 \ 0 \ 0]$

Bias/Variance of Model-free Policy Evaluation Algorithms

- ullet Return G_t is an unbiased estimate of $V^\pi(s_t)$
- TD target $[r_t + \gamma V^{\pi}(s_{t+1})]$ is a biased estimate of $V^{\pi}(s_t)$
- But often much lower variance than a single return G_t
- Return function of multi-step sequence of random actions, states & rewards
- TD target only has one random action, reward and next state
- MC
 - Unbiased (for first visit)
 - High variance
 - Consistent (converges to true) even with function approximation
- TD
 - Some bias
 - Lower variance
 - TD(0) converges to true value with tabular representation
 - TD(0) does not always converge with function approximation

s_1	<i>S</i> ₂	s_3	S_4	s_5	s ₆	S ₇
R(s ₁) = +1 Okay Field Site	$R(s_2)=0$	$R(s_3)=0$	$R(s_4) = 0$	$R(s_5)=0$		R(s ₇) = +10 Fantastic Field Site

- Mars rover: $R = [1 \ 0 \ 0 \ 0 \ 0 \ +10]$ for any action
- $\pi(s) = a_1 \ \forall s, \ \gamma = 1$. any action from s_1 and s_7 terminates episode
- Trajectory = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, terminal)$
- First visit MC estimate of V of each state? [1 1 1 0 0 0 0]
- TD estimate of all states (init at 0) with $\alpha = 1$ is $[1\ 0\ 0\ 0\ 0\ 0]$
- TD(0) only uses a data point (s, a, r, s') once
- Monte Carlo takes entire return from s to end of episode