Lecture 3: Model-Free Policy Evaluation: Policy Evaluation Without Knowing How the World Works

Emma Brunskill

CS234 Reinforcement Learning

Spring 2024

• Material builds on structure from David Silver's Lecture 4: Model-Free Prediction. Other resources: Sutton and Barto Jan 1 2018 draft Chapter/Sections: 5.1; 5.5; 6.1-6.3

- In a tabular MDP asymptotically value iteration will always yield a policy with the same value as the policy returned by policy iteration
 - Prue.
 False
 Not sure
- Can value iteration require more iterations than $|A|^{|S|}$ to compute the optimal value function? (Assume |A| and |S| are small enough that each round of value iteration can be done exactly).

Not sure

- In a tabular MDP asymptotically value iteration will always yield a policy with the same value as the policy returned by policy iteration Answer. True. Both are guaranteed to converge to the optimal value function and a policy with an optimal value
- Can value iteration require more iterations than $|A|^{|S|}$ to compute the optimal value function? (Assume |A| and |S| are small enough that each round of value iteration can be done exactly).

Answer: True. As an example, consider a single state, single action MDP where r(s, a) = 1, $\gamma = .9$ and initialize $V_0(s) = 0$. $V^*(s) = \frac{1}{1-\gamma}$ but after the first iteration of value iteration, $V_1(s) = 1$.

- Last Time:
 - Markov reward / decision processes
 - Policy evaluation & control when have true model (of how the world works)
- Today
 - Policy evaluation without known dynamics & reward models
- Next Time:
 - Control when don't have a model of how the world works

- Estimate expected return of policy π
- Only using data from environment¹ (direct experience)
- Why is this important?
- What properties do we want from policy evaluation algorithms?

¹Assume today this experience comes from executing the policy π . Later will consider how to do policy evaluation using data gathered from other policies.

Emma Brunskill (CS234 Reinforcement Learn Lecture 3: Model-Free Policy Evaluation: Po

- Estimating the expected return of a particular policy if don't have access to true MDP models
- Monte Carlo policy evaluation
 - · Policy evaluation when don't have a model of how the world works
 - Given on-policy samples
- Temporal Difference (TD)
- Certainty Equivalence with dynamic programming
- Batch policy evaluation

Recall

- Definition of Return, G_t (for a MRP)
 - Discounted sum of rewards from time step t to horizon

$$G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$$

- Definition of State Value Function, $V^{\pi}(s)$
 - Expected return starting in state \boldsymbol{s} under policy $\boldsymbol{\pi}$

$$V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s] = \mathbb{E}_{\pi}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots |s_t = s]$$

- Definition of State-Action Value Function, $Q^{\pi}(s, a)$
 - Expected return starting in state s, taking action a and following policy π

$$Q^{\pi}(s, a) = \mathbb{E}_{\pi}[G_t | s_t = s, a_t = a]$$

= $\mathbb{E}_{\pi}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots | s_t = s, a_t = a]$

Spring 2024

Recall: Dynamic Programming for Policy Evaluation

• In a Markov decision process

$$\begin{aligned} & \sqrt{\pi}(s) &= & \mathbb{E}_{\pi}[G_{t}|s_{t}=s] \\ &= & \mathbb{E}_{\pi}[r_{t}+\gamma r_{t+1}+\gamma^{2}r_{t+2}+\gamma^{3}r_{t+3}+\cdots|s_{t}=s] \\ &= & R(s,\pi(s))+\gamma\sum_{s'\in S}P(s'|s,\pi(s))V^{\pi}(s') \end{aligned}$$

 If given dynamics and reward models, can do policy evaluation through dynamic programming defromis ti <

$$V_k^{\pi}(s) = r(s, \pi(s)) + \gamma \sum_{s' \in S} p(s'|s, \pi(s)) V_{k-1}^{\pi}(s')$$
 (1)

- **Note**: before convergence, V_k^{π} is an estimate of V^{π}
- In Equation 1 we are substituting $\sum_{s' \in S} p(s'|s, \pi(s)) V_{k-1}^{\pi}(s')$ for $\mathbb{E}_{\pi}[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots | s_t = s].$
- This substitution is an instance of bootstrapping

- Estimating the expected return of a particular policy if don't have access to true MDP models
- Monte Carlo policy evaluation
 - Policy evaluation when don't have a model of how the world work
 - Given on-policy samples
- Temporal Difference (TD)
- Certainty Equivalence with dynamic programming
- Batch policy evaluation

Monte Carlo (MC) Policy Evaluation

for most of today assume TI is determistic

- $G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots + \gamma^{T_i t} r_{T_i}$ in MDP *M* under policy π
- $V^{\pi}(s) = \mathbb{E}_{\tau \sim \pi}[G_t | s_t = s]$
 - Expectation over trajectories τ generated by following π
- Simple idea: Value = mean return
- If trajectories are all finite, sample set of trajectories & average returns
- Note: all trajectories may not be same length (e.g. consider MDP with terminal states)

- If trajectories are all finite, sample set of trajectories & average returns
- Does not require MDP dynamics/rewards
- Does not assume state is Markov
- Can be applied to episodic MDPs
 - Averaging over returns from a complete episode
 - Requires each episode to terminate

Initialize N(s) = 0, G(s) = 0 $\forall s \in S$ Loop

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}, a_{i,T_i}, r_{i,T_i}$
- Define $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots \gamma^{T_i 1} r_{i,T_i}$ as return from time step *t* onwards in *i*th episode
- For each time step t until T_i (the end of the episode i)
 - If this is the **first** time t that state s is visited in episode i
 - Increment counter of total first visits: N(s) = N(s) + 1
 - Increment total return $G(s) = G(s) + G_{i,t}$
 - Update estimate $V^{\pi}(s) = G(s)/N(s)$

Initialize N(s) = 0, G(s) = 0 $\forall s \in S$ Loop

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}, a_{i,T_i}, r_{i,T_i}$
- Define $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots \gamma^{T_i 1} r_{i,T_i}$ as return from time step *t* onwards in *i*th episode
- For each time step t until T_i (the end of the episode i)
 - state s is the state visited at time step t in episodes i
 - Increment counter of total visits: N(s) = N(s) + 1
 - Increment total return $G(s) = G(s) + G_{i,t}$
 - Update estimate $V^{\pi}(s) = G(s)/N(s)$

Optional Worked Example: MC On Policy Evaluation

Initialize N(s) = 0, $G(s) = 0 \ \forall s \in S$ Loop

• Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}, a_{i,T_i}, r_{i,T_i}$

•
$$G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots \gamma^{T_i - 1} r_{i,T_i}$$

- For each time step t until T_i (the end of the episode i)
 - If this is the **first** time t that state s is visited in episode i (for first visit MC)
 - Increment counter of total first visits: N(s) = N(s) + 1
 - Increment total return $G(s) = G(s) + G_{i,t}$
 - Update estimate $V^{\pi}(s) = G(s)/N(s)$
- Mars rover: R(s) = [1 0 0 0 0 + 10]
- Trajectory = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, \text{terminal})$
- Let γ < 1. Compute the first visit & every visit MC estimates of s₂.
- See solutions at the end of the slides

After each episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots$

- Define $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots$ as return from time step t onwards in *i*th episode
- For state *s* visited at time step *t* in episode *i*
 - Increment counter of total visits: N(s) = N(s) + 1
 - Update estimate

$$V^{\pi}(s) = V^{\pi}(s)\frac{N(s)-1}{N(s)} + \frac{G_{i,t}}{N(s)} = V^{\pi}(s) + \frac{1}{N(s)}(\underbrace{G_{i,t} - V^{\pi}(s)}_{k \neq k})$$

Incremental Monte Carlo (MC) On Policy Evaluation

• Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}, a_{i,T_i}, r_{i,T_i}$

•
$$G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots \gamma^{T_i - 1} r_{i,T_i}$$

• for t = 1: T_i where T_i is the length of the *i*-th episode

•
$$V^{\pi}(s_{it}) = V^{\pi}(s_{it}) + \alpha(G_{i,t} - V^{\pi}(s_{it}))$$

 We will see many algorithms of this form with a learning rate, target, and incremental update

alphaGo

э

= Expectation **T** = Terminal state

Spring 2024

MC Policy Evaluation

$$V^{\pi}(s) = V^{\pi}(s) + \alpha(G_{i,t} - V^{\pi}(s))$$

= Expectation
 = Terminal state

Emma Brunskill (CS234 Reinforcement Learn Lecture 3: Model-Free Policy Evaluation: Po

э

MC Policy Evaluation

$$V^{\pi}(s) = V^{\pi}(s) + \alpha(\underline{G}_{i,t} - V^{\pi}(s))$$

Emma Brunskill (CS234 Reinforcement Learn Lecture 3: Model-Free Policy Evaluation: Po

Spring 2024

- Consistency: with enough data, does the estimate converge to the true value of the policy?
- Computational complexity: as get more data, computational cost of updating estimate
- Memory requirements
- Statistical efficiency (intuitively, how does the accuracy of the estimate change with the amount of data)
- Empirical accuracy, often evaluated by mean squared error

Evaluation of the Quality of a Policy Estimation Approach: Bias, Variance and MSE

- Consider a statistical model that is parameterized by θ and that determines a probability distribution over observed data P(x|θ)
- Consider a statistic $\hat{\theta}$ that provides an estimate of θ and is a function of observed data x
 - E.g. for a Gaussian distribution with known variance, the average of a set of i.i.d data points is an estimate of the mean of the Gaussian
- Definition: the bias of an estimator $\hat{\theta}$ is:

$$\mathsf{Bias}_{ heta}(\hat{ heta}) = \mathbb{E}_{\mathsf{x}| heta}[\hat{ heta}] - heta$$

• Definition: the variance of an estimator $\hat{\theta}$ is:

$$Var(\hat{ heta}) = \mathbb{E}_{x| heta}[(\hat{ heta} - \mathbb{E}[\hat{ heta}])^2]$$

• Definition: mean squared error (MSE) of an estimator $\hat{\theta}$ is:

$$\textit{MSE}(\hat{ heta}) = \textit{Var}(\hat{ heta}) + \textit{Bias}_{ heta}(\hat{ heta})^2$$

Evaluation of the Quality of a Policy Estimation Approach: Consistent Estimator

- Consider a statistical model that is parameterized by θ and that determines a probability distribution over observed data P(x|θ)
- Consider a statistic $\hat{\theta}$ that provides an estimate of θ and is a function of observed data x
- Definition: the bias of an estimator $\hat{\theta}$ is:

$$\textit{Bias}_{ heta}(\hat{ heta}) = \mathbb{E}_{x| heta}[\hat{ heta}] - heta$$

- Let n be the number of data points x used to estimate the parameter θ and call the resulting estimate of θ using that data θ̂_n
- Then the estimator $\hat{\theta}_n$ is consistent if, for all $\epsilon>0$

$$\lim_{n\to\infty}\Pr(|\hat{\theta}_n-\theta|>\epsilon)=0$$

• If an estimator is unbiased (bias = 0) is it consistent?

Spring 2024

Properties:

- First-visit Monte Carlo
 - V^{π} estimator is an unbiased estimator of true $\mathbb{E}_{\pi}[G_t|s_t = s]$
 - By law of large numbers, as $N(s) o \infty$, $V^{\pi}(s) o \mathbb{E}_{\pi}[G_t | s_t = s]$
- Every-visit Monte Carlo
 - V^{π} every-visit MC estimator is a **biased** estimator of V^{π}
 - But consistent estimator and often has better MSE
- Incremental Monte Carlo
 - $\bullet\,$ Properties depends on the learning rate α

Properties of Monte Carlo On Policy Evaluators

- Update is: $V^{\pi}(s_{it}) = V^{\pi}(s_{it}) + \alpha_k(s_j)(G_{i,t} V^{\pi}(s_{it}))$
- where we have allowed α to vary (let k be the total number of updates done so far, for state s_{it} = s_j)

If

$$\sum_{n=1}^{\infty} \alpha_n(s_j) = \infty,$$
$$\sum_{n=1}^{\infty} \alpha_n^2(s_j) < \infty$$

• then incremental MC estimate will converge to true policy value $V^{\pi}(s_i)$

- Generally high variance estimator
 - Reducing variance can require a lot of data
 - In cases where data is very hard or expensive to acquire, or the stakes are high, MC may be impractical
- Requires episodic settings
 - Episode must end before data from episode can be used to update ${\it V}$

Monte Carlo (MC) Policy Evaluation Summary

- Aim: estimate $V^{\pi}(s)$ given episodes generated under policy π
 - $s_1, a_1, r_1, s_2, a_2, r_2, \ldots$ where the actions are sampled from π
- $G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$ under policy π
- $V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s]$
- Simple: Estimates expectation by empirical average (given episodes sampled from policy of interest)
- Updates V estimate using sample of return to approximate the expectation
- Does not assume Markov process
- Converges to true value under some (generally mild) assumptions
- **Note:** Sometimes is preferred over dynamic programming for policy evaluation *even if know the true dynamics model and reward*

- Estimating the expected return of a particular policy if don't have access to true MDP models
- Monte Carlo policy evaluation
- Temporal Difference (TD)
- Certainty Equivalence with dynamic programming
- Batch policy evaluation

Temporal Difference Learning

(musily discuss TD(0))

- "If one had to identify one idea as central and novel to reinforcement learning, it would undoubtedly be temporal-difference (TD) learning." – Sutton and Barto 2017
- Combination of Monte Carlo & dynamic programming methods
- Model-free
- Can be used in episodic or infinite-horizon non-episodic settings
- Immediately updates estimate of V after each (s, a, r, s') tuple

Temporal Difference Learning for Estimating V

- Aim: estimate $V^{\pi}(s)$ given episodes generated under policy π
- $G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$ in MDP *M* under policy π
- $V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s]$
- Recall Bellman operator (if know MDP models)

$$B^{\pi}V(s) = r(s,\pi(s)) + \gamma \sum_{s' \in S} p(s'|s,\pi(s))V(s')$$

 In incremental every-visit MC, update estimate using 1 sample of return (for the current *i*th episode)

$$V^{\pi}(s) = V^{\pi}(s) + \alpha(G_{i,t} - V^{\pi}(s))$$

• Idea: have an estimate of V^{π} , use to estimate expected return $V^{\pi}(s) = V^{\pi}(s) + \alpha([r_t + \gamma V^{\pi}(s_{t+1})] - V^{\pi}(s))$

Temporal Difference [TD(0)] Learning

- Aim: estimate $V^{\pi}(s)$ given episodes generated under policy π
 - $s_1, a_1, r_1, s_2, a_2, r_2, \ldots$ where the actions are sampled from π
- TD(0) learning / 1-step TD learning: update estimate towards target

$$V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} - V^{\pi}(s_t))$$

- TD(0) error: $\delta_t = r_t + \gamma V^{\pi}(s_{t+1}) - V^{\pi}(s_t)$
- Can immediately update value estimate after (s, a, r, s') tuple
- Don't need episodic setting

33 / 67

Input:
$$lpha$$

Initialize $V^{\pi}(s) = 0, \ \forall s \in S$
Loop

• Sample **tuple**
$$(s_t, a_t, r_t, s_{t+1})$$

•
$$V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} - V^{\pi}(s_t))$$

Worked Example TD Learning

Input:
$$\alpha$$

Initialize $V^{\pi}(s) = 0, \forall s \in S$
Loop

• Sample tuple
$$(s_t, a_t, r_t, s_{t+1})$$

• $V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} - V^{\pi}(s_t))$

Example Mars rover: $\mathsf{R} = [\ 1 \ 0 \ 0 \ 0 \ 0 \ +10]$ for any action

•
$$\pi(s) = a_1 \forall s, \gamma = 1$$
. any action from s_1 and s_7 terminates episode
• Trajectory = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, \text{terminal})$
 $V(s_3) = V(s_3) (1-\alpha) + \alpha (0+\gamma V(s_2)) = 0$
 $V(s_1) = V(s_1) (1-\alpha) + \alpha (1+\gamma V(s_2))$
 $= \alpha \cdot \beta$

Worked Example TD Learning

Input: α Initialize $V^{\pi}(s) = 0, \forall s \in S$ Loop

• Sample tuple
$$(s_t, a_t, r_t, s_{t+1})$$

• $V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} - V^{\pi}(s_t))$

Example:

- Mars rover: R = [1 0 0 0 0 0 + 10] for any action
- $\pi(s) = a_1 \ \forall s, \ \gamma = 1$. any action from s_1 and s_7 terminates episode
- Trajectory = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, \text{ terminal})$
- TD estimate of all states (init at 0) with $\alpha = 1$, $\gamma < 1$ at end of this episode?

$$V = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ s_{1} & s_{7} & & & \\ \end{bmatrix}$$

• First visit MC estimate of V of each state? [1 $\gamma \gamma^2$ 0 0 0 0]

Temporal Difference (TD) Policy Evaluation

$$V^{\pi}(s_{t}) = r(s_{t}, \pi(s_{t})) + \gamma \sum_{s_{t+1}} \underbrace{P(s_{t+1}|s_{t}, \pi(s_{t}))}_{V^{\pi}(s_{t+1})} V^{\pi}(s_{t+1})$$
$$V^{\pi}(s_{t}) = V^{\pi}(s_{t}) + \alpha([r_{t} + \gamma V^{\pi}(s_{t+1})] - V^{\pi}(s_{t}))$$

Emma Brunskill (CS234 Reinforcement Learn Lecture 3: Model-Free Policy Evaluation: Po

Spring 2024

Check Your Understanding L3N2: Polleverywhere Poll Temporal Difference [TD(0)] Learning Algorithm

Input: α Initialize $V^{\pi}(s) = 0, \forall s \in S$ Loop

- Sample tuple (s_t, a_t, r_t, s_{t+1})
- $V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} V^{\pi}(s_t))$

Select all that are true

- **(**) If $\alpha = 0$ TD will weigh the TD target more than the past V estimate
- **2** If $\alpha = 1$ TD will update the V estimate to the TD target $\forall V \subset$
- 3 If $\alpha = 1$ TD in MDPs where the policy goes through states with multiple possible next states, V may oscillate forever
- There exist deterministic MDPs where $\alpha = 1$ TD will converge $\rho(s'/s_{c}) = / f_{w} e_{s} cf/q one s'$

fla

0+10 +1 -1 1 ,5 K/s

Check Your Understanding L3N2: Polleverywhere Poll Temporal Difference [TD(0)] Learning Algorithm

Input: α Initialize $V^{\pi}(s) = 0, \forall s \in S$ Loop

• Sample **tuple**
$$(s_t, a_t, r_t, s_{t+1})$$

•
$$V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} - V^{\pi}(s_t))$$

Answers. If $\alpha = 1$ TD will update to the TD target. If $\alpha = 1$ TD in MDPs where the policy goes through states with multiple possible next states, V may oscillate forever. There exist deterministic MDPs where $\alpha = 1$ TD will converge.

Summary: Temporal Difference Learning

- Combination of Monte Carlo & dynamic programming methods (1) V(s') (+ 1) Y(s')
- Model-free
- Bootstraps and samples
- Can be used in episodic or infinite-horizon non-episodic settings
- Immediately updates estimate of V after each (s, a, r, s') tuple
- Biased estimator (early on will be influenced by initialization, and won't be unibased estimator)
- Generally lower variance than Monte Carlo policy evaluation
- Consistent estimator if learning rate α satisfies same conditions specified for incremental MC policy evaluation to converge
- Note: algorithm I introduced is TD(0). In general can have approaches that interpolate between TD(0) and Monte Carlo approach

- Estimating the expected return of a particular policy if don't have access to true MDP models
- Monte Carlo policy evaluation
- Temporal Difference (TD)
- Certainty Equivalence with dynamic programming
- Batch policy evaluation

Certainty Equivalence V^{π} MLE MDP Model Estimates

- Model-based option for policy evaluation without true models
- After each (s_i, a_i, r_i, s_{i+1}) tuple
 - Recompute maximum likelihood MDP model for (s, a)

$$\hat{P}(s'|s,a) = rac{1}{N(s,a)} \sum_{k=1}^{i} \mathbb{1}(s_k = s, a_k = a, s_{k+1} = s')$$

$$\hat{r}(s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{i} \mathbb{1}(s_k = s, a_k = a) r_k$$

• Compute V^{π} using MLE MDP ² (using any dynamic programming method from lecture 2))

• Optional worked example at end of slides for Mars rover domain.

²Requires initializing for all (s, a) pairs

Emma Brunskill (CS234 Reinforcement Learn Lecture 3: Model-Free Policy Evaluation: Po

Certainty Equivalence V^{π} MLE MDP Model Estimates

- Model-based option for policy evaluation without true models
- After each (s, a, r, s') tuple
 - Recompute maximum likelihood MDP model for (s, a)

$$\begin{array}{c}
\hat{P}(s'|s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{T_{k}-1} 1(s_{k,t} = s, a_{k,t} = a, s_{k,t+1} = s') \\
\hat{P}(s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{T_{k}-1} 1(s_{k,t} = s, a_{k,t} = a) r_{t,k}
\end{array}$$

• Compute V^{π} using MLE MDP

- Cost: Updating MLE model and MDP planning at each update (O(|S|³) for analytic matrix solution, O(|S|²|A|) for iterative methods)
- Very data efficient and very computationally expensive
- Consistent (will converge to right estimate for Markov models)
- Can also easily be used for off-policy evaluation (which we will shortly define and discuss)

- Estimating the expected return of a particular policy if don't have access to true MDP models
- Monte Carlo policy evaluation
 - Policy evaluation when don't have a model of how the world work
 - Given on-policy samples
- Temporal Difference (TD)
- Certainty Equivalence with dynamic programming
- Batch policy evaluation

- Batch (Offline) solution for finite dataset
 - Given set of K episodes
 - Repeatedly sample an episode from K
 - Apply MC or TD(0) to the sampled episode
- What do MC and TD(0) converge to?

AB Example: (Ex. 6.4, Sutton & Barto, 2018)

- Two states A, B with $\gamma = 1$
- Given 8 episodes of experience:
 - A, 0, B, 0
 - B,1 (observed 6 times)
 - *B*,0

(1-a) V(B) 1 x (rig. c)

 $(I-\alpha) \vee (B)^{\dagger} \alpha (G_R)$

• Imagine running TD updates over data infinite number of times

•
$$V(B) = \frac{6}{8} = .75$$

MC $V(B) = \frac{6}{8}$

AB Example: (Ex. 6.4, Sutton & Barto, 2018)

• TD Update:
$$V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} - V^{\pi}(s_t))$$

- Two states A, B with $\gamma = 1$
- Given 8 episodes of experience:
 - A, 0, B, 0
 - B,1 (observed 6 times)
 - *B*,0
- Imagine run TD updates over data infinite number of times
- *V*(*B*) = 0.75 by TD or MC
- What about V(A)?

Check Your Understanding L3N3: AB Example: (Ex. 6.4, Sutton & Barto, 2018)

• TD Update:
$$V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} - V^{\pi}(s_t))$$

- Two states A, B with $\gamma = 1$
- Given 8 episodes of experience:
 - ▲, 0, <u>B, 0</u>
 - B,1 (observed 6 times)
 - B.0
- Imagine run TD updates over data infinite number of times TD '75 OTTV(B)

• • MC D

- *V*(*B*) = 0.75 by TD or MC
- What about V(A)?
- Respond in Poll

& is sit connetly for then to convey

Check Your Understanding L3N3: AB Example: (Ex. 6.4, Sutton & Barto, 2018)

• TD Update:
$$V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} - V^{\pi}(s_t))$$

- Two states A, B with $\gamma = 1$
- Given 8 episodes of experience:
 - A, 0, B, 0
 - B,1 (observed 6 times)
 - *B*,0
- Imagine run TD updates over data infinite number of times
- *V*(*B*) = 0.75 by TD or MC
- What about V(A)?
 V^{MC}(A) = 0 V^{TD}(A) = .75

Batch MC and TD: Convergence

- Monte Carlo in batch setting converges to min MSE (mean squared error)
 - Minimize loss with respect to observed returns
 - In AB example, V(A) = 0
- TD(0) converges to DP policy V^{π} for the MDP with the maximum likelihood model estimates
- Aka same as dynamic programming with certainty equivalence!
 - Maximum likelihood Markov decision process model

$$\hat{P}(s'|s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{i} \mathbb{1}(s_k = s, a_k = a, s_{k+1} = s')$$

$$\hat{r}(s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{\prime} \mathbb{1}(s_k = s, a_k = a) r_k$$

- Compute V^{π} using this model
- In AB example, V(A) = 0.75

Spring 2024

Some Important Properties to Evaluate Model-free Policy Evaluation Algorithms

- Data efficiency & Computational efficiency
- In simple TD(0), use (s, a, r, s') once to update V(s)
 - O(1) operation per update
 - In an episode of length L, O(L)
- In MC have to wait till episode finishes, then also O(L)
- MC can be more data efficient than simple TD
- But TD exploits Markov structure
 - If in Markov domain, leveraging this is helpful
- Dynamic programming with certainty equivalence also uses Markov structure

51/67

Summary: Policy Evaluation

Estimating the expected return of a particular policy if don't have access to true MDP models. Ex. evaluating average purchases per session of new product recommendation system

- Monte Carlo policy evaluation
 - Policy evaluation when we don't have a model of how the world works
 - Given on policy samples
 - Given off policy samples
- Temporal Difference (TD)
- Dynamic Programming with certainty equivalence
- *Understand what MC vs TD methods compute in batch evaluations
- Metrics / Qualities to evaluate and compare algorithms
 - Uses Markov assumption
 - Accuracy / MSE / bias / variance
 - Data efficiency
 - Computational efficiency

- Last Time:
 - Markov reward / decision processes
 - Policy evaluation & control when have true model (of how the world works)
- Today
 - Policy evaluation without known dynamics & reward models
- Next Time:
 - Control when don't have a model of how the world works

Optional Worked Example MC On Policy Evaluation Answers

Initialize N(s) = 0, G(s) = 0 $\forall s \in S$ Loop

• Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}, a_{i,T_i}, r_{i,T_i}$

•
$$G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots \gamma^{T_i - 1} r_{i,T_i}$$

- For each time step t until T_i (the end of the episode i)
 - If this is the **first** time t that state s is visited in episode i
 - Increment counter of total first visits: N(s) = N(s) + 1
 - Increment total return $G(s) = G(s) + G_{i,t}$
 - Update estimate $V^{\pi}(s) = G(s)/N(s)$
- Mars rover: R = [10000+10] for any action
- Trajectory = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, \text{terminal})$
- Let $\gamma < 1$. Compare the first visit & every visit MC estimates of s_2 . First visit: $V^{MC}(s_2) = \gamma^2$, Every visit: $V^{MC}(s_2) = \frac{\gamma^2 + \gamma}{2}$

Optional Check Your Understanding L3 Incremental MC (State if each is True or False)

First or Every Visit MC

• Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}, a_{i,T_i}, r_{i,T_i}$

Incremental MC

• Sample episode
$$i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}, a_{i,T_i}, r_{i,T_i}$$

•
$$G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots \gamma^{T_i - 1} r_{i,T_i}$$

• for t = 1: T_i where T_i is the length of the *i*-th episode

•
$$V^{\pi}(s_{it}) = V^{\pi}(s_{it}) + \alpha(G_{i,t} - V^{\pi}(s_{it}))$$

] Incremental MC with lpha=1 is the same as first visit MC

2 Incremental MC with $\alpha = \frac{1}{N(s_{it})}$ is the same as every visit MC

3 Incremental MC with $\alpha > \frac{1}{N(s_{i+})}$ could be helpful in non-stationary domains

Check Your Understanding L3N1: Polleverywhere Poll Incremental MC Answers

First or Every Visit MC

•
$$G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots \gamma^{T_i - 1} r_{i,T_i}$$

For all s, for first or every time t that state s is visited in episode i
 N(s) = N(s) + 1, G(s) = G(s) + G_{i,t}
 Update estimate V^π(s) = G(s)/N(s)

Incremental MC

• for t = 1: T_i where T_i is the length of the *i*-th episode • $V^{\pi}(s_{it}) = V^{\pi}(s_{it}) + \alpha(G_{i,t} - V^{\pi}(s_{it}))$

Incremental MC with $\alpha = 1$ is the same as first visit MC false

2 Incremental MC with
$$\alpha = \frac{1}{N(s_{it})}$$
 is the same as every visit MC true

Incremental MC with
$$\alpha > \frac{1}{N(s_{it})}$$
 could help in non-stationary domains true

<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	S_4	s_5	<i>s</i> ₆	<i>s</i> ₇
R(s ₁) = +1 Okay Field Site	$R(s_2) = 0$	$R(s_3) = 0$	R(s4) = 0	$R(s_{5}) = 0$	$R(s_6)=0$	R(s ₇) = +10 Fantastic Field Site

- Mars rover: $\mathsf{R} = [\ 1 \ 0 \ 0 \ 0 \ 0 \ +10]$ for any action
- $\pi(s) = a_1 \ \forall s, \ \gamma = 1$. any action from s_1 and s_7 terminates episode
- Trajectory = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, \text{terminal})$
- First visit MC estimate of V of each state? [1 $\gamma \gamma^2$ 0 0 0 0]
- TD estimate of all states (init at 0) with $\alpha = 1$ is $\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix}$
- Optional exercise: What is the certainty equivalent estimate?

Certainty Equivalence V^{π} MLE MDP Worked Ex Solution

s_1	<i>s</i> ₂	<i>s</i> ₃	s_4	<i>s</i> ₅	<i>s</i> ₆	S_7
R(s ₁) = +1 Okay Field Site	$R(s_2) = 0$	$R(s_3) = 0$		$R(s_5) = 0$	$R(s_6)=0$	R(s ₇) = +10 Fantastic Field Site

- Mars rover: R = [10000+10] for any action
- $\pi(s) = a_1 \ \forall s, \ \gamma = 1$. any action from s_1 and s_7 terminates episode
- Trajectory = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, \text{terminal})$
- First visit MC estimate of V of each state? [1 $\gamma \gamma^2$ 0 0 0 0]
- TD estimate of all states (init at 0) with $\alpha = 1$ is $\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix}$
- Optional exercise: What is the certainty equivalent estimate?
- $\hat{r} = [1 \ 0 \ 0 \ 0 \ 0], \ \hat{\rho}(terminate|s_1, a_1) = \hat{\rho}(s_2|s_3, a_1) = 1$ $\hat{\rho}(s_2|s_2, a_1) = 0.5 = \hat{\rho}(s_1|s_2, a_1)$

$$V = \begin{bmatrix} 0 & \frac{\gamma * 0.5}{1 - 0.5\gamma} & \frac{\gamma^2 * 0.5}{1 - 0.5\gamma} & 0 & 0 & 0 \end{bmatrix}$$