CS234: Reinforcement Learning - Problem Session \#6

Spring 2023-2024

Problem 1

Consider an infinite-horizon, discounted $\operatorname{MDP} \mathcal{M}=\langle\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathcal{T}, \gamma\rangle$. As usual, for any policy $\pi: \mathcal{S} \rightarrow \Delta(\mathcal{A})$, the value function induced by π is defined as

$$
V^{\pi}(s)=\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \mathcal{R}\left(s_{t}, a_{t}\right) \mid s_{0}=s, \pi\right] .
$$

1. For an arbitrary $Z \in \mathbb{N}$, consider learning with $Z+1$ distinct discount factors $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{Z}$ where the final discount factor matches that of the MDP $\mathcal{M}, \gamma_{Z}=\gamma$. Letting $[Z] \triangleq\{1,2, \ldots, Z\}$ denote the index set, we define the following functions for any policy π :

$$
V_{\gamma_{z}}^{\pi}=\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma_{z}^{t} \mathcal{R}\left(s_{t}, a_{t}\right) \mid s_{0}=s, \pi\right] \quad W_{z}^{\pi}=V_{\gamma_{z}}^{\pi}-V_{\gamma_{z-1}}^{\pi}, \quad \forall z \in[Z]
$$

where $W_{0}=V_{\gamma_{0}}^{\pi}$.
(a) For any $z \in[Z]$; any policy $\pi: \mathcal{S} \rightarrow \Delta(\mathcal{A})$; and any $s \in \mathcal{S}$, write an expression for $V_{\gamma_{z}}^{\pi}(s)$ exclusively in terms of $\left\{W_{0}^{\pi}, W_{1}^{\pi}, \ldots, W_{Z}^{\pi}\right\}$.
(b) Show that W_{z}^{π} obeys the following Bellman equation for any $z \in[Z]$ and $s \in \mathcal{S}$:

$$
W_{z}^{\pi}(s)=\mathbb{E}_{\substack{a \sim \pi(\cdot \mid s) \\ s^{\prime} \sim \mathcal{T}(\cdot \mid s, a)}}\left[\left(\gamma_{z}-\gamma_{z-1}\right) V_{\gamma_{z-1}}^{\pi}\left(s^{\prime}\right)+\gamma_{z} W_{z}^{\pi}\left(s^{\prime}\right)\right]
$$

2. Let $\gamma, \beta \in[0,1)$ be two discount factors such that $\beta \leq \gamma$. Let $\pi: \mathcal{S} \rightarrow \Delta(\mathcal{A})$ be an arbitrary policy that induces value functions V_{γ}^{π} and V_{β}^{π} under the two discount factors, respectively. Similarly, define the Bellman operators

$$
\begin{aligned}
& \mathcal{B}_{\gamma}^{\pi} V(s)=\mathbb{E}_{a \sim \pi(\cdot \mid s)}\left[\mathcal{R}(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim \mathcal{T}(\cdot \mid s, a)}\left[V\left(s^{\prime}\right)\right]\right] \\
& \mathcal{B}_{\beta}^{\pi} V(s)=\mathbb{E}_{a \sim \pi(\cdot \mid s)}\left[\mathcal{R}(s, a)+\beta \mathbb{E}_{s^{\prime} \sim \mathcal{T}(\cdot \mid s, a)}\left[V\left(s^{\prime}\right)\right]\right] .
\end{aligned}
$$

With the reward upper bound $R_{\mathrm{MAX}}=\max _{(s, a) \in \mathcal{S} \times \mathcal{A}} \mathcal{R}(s, a)$, prove that

$$
\left\|V_{\gamma}^{\pi}-V_{\beta}^{\pi}\right\|_{\infty} \leq \frac{(\gamma-\beta) R_{\mathrm{MAX}}}{(1-\gamma)(1-\beta)}
$$

3. Let $\alpha, \gamma \in[0,1)$ be two discount factors such that $\gamma \leq \alpha$. Consider a new $\operatorname{MDP} \mathcal{M}^{\prime}=\left\langle\mathcal{S}, \mathcal{A}, \mathcal{T}^{\prime}, \mathcal{R}, \alpha\right\rangle$ with a different transition function $\mathcal{T}^{\prime}: \mathcal{S} \times \mathcal{A} \rightarrow \Delta(\mathcal{S})$ defined for $\lambda \in[0,1]$ as

$$
\mathcal{T}^{\prime}\left(s^{\prime} \mid s, a\right)=(1-\lambda) \mathcal{T}\left(s^{\prime} \mid s, a\right)+\lambda \mathbb{1}\left(s=s^{\prime}\right), \quad \forall\left(s, a, s^{\prime}\right) \in \mathcal{S} \times \mathcal{A} \times \mathcal{S}
$$

In words, the new transition function \mathcal{T}^{\prime} follows the transitions of the original MDP \mathcal{T} with probability $(1-\lambda)$ and takes a self-looping transition with probability λ. We will use subscripts to distinguish between value functions of \mathcal{M} versus those of \mathcal{M}^{\prime}.

Assuming that both \mathcal{M} and \mathcal{M}^{\prime} are tabular, recall the matrix form of the Bellman equations for any policy π :

$$
V_{\mathcal{M}}^{\pi}=\left(I-\gamma \mathcal{T}^{\pi}\right)^{-1} \mathcal{R}^{\pi} \quad V_{\mathcal{M}^{\prime}}^{\pi}=\left(I-\alpha \mathcal{T}^{\prime \pi}\right)^{-1} \mathcal{R}^{\pi}
$$

where
$\mathcal{R}^{\pi}(s)=\mathbb{E}_{a \sim \pi(\cdot \mid s)}[\mathcal{R}(s, a)] \quad \mathcal{T}^{\pi}\left(s^{\prime} \mid s\right)=\mathbb{E}_{a \sim \pi(\cdot \mid s)}\left[\mathcal{T}\left(s^{\prime} \mid s, a\right)\right] \quad \mathcal{T}^{\prime \pi}\left(s^{\prime} \mid s\right)=\mathbb{E}_{a \sim \pi(\cdot \mid s)}\left[\mathcal{T}^{\prime}\left(s^{\prime} \mid s, a\right)\right]$
(a) Give a value of λ such that, for any policy π,

$$
V_{\mathcal{M}^{\prime}}^{\pi}=\frac{1-\gamma}{1-\alpha} \cdot V_{\mathcal{M}}^{\pi}
$$

(b) If π^{\star} is the optimal policy of MDP \mathcal{M}, prove that π^{\star} is also optimal in \mathcal{M}^{\prime}.

