CS234: Reinforcement Learning - Problem Session \#5

Spring 2023-2024

Problem 1

Consider an infinite-horizon, discounted $\operatorname{MDP} \mathcal{M}=\langle\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathcal{T}, \gamma\rangle$. Define the maximal reward $R_{\mathrm{MAX}}=$ $\max _{(s, a) \in \mathcal{S} \times \mathcal{A}} \mathcal{R}(s, a)$. Consider a second MDP $\widehat{\mathcal{M}}=\langle\mathcal{S}, \mathcal{A}, \widehat{\mathcal{R}}, \widehat{\mathcal{T}}, \gamma\rangle$ and define the constant $V_{\mathrm{MAX}}=\frac{R_{\mathrm{MAX}}}{1-\gamma}$. We will use subscripts to distinguish between arbitrary value functions $V_{\mathcal{M}}$ and $V_{\widehat{\mathcal{M}}}$ of MDPs \mathcal{M} and $\widehat{\mathcal{M}}$, respectively. Suppose we have two constants $\varepsilon_{1}, \varepsilon_{2}>0$ such that

$$
\max _{s, a \in \mathcal{S} \times \mathcal{A}}|\mathcal{R}(s, a)-\widehat{\mathcal{R}}(s, a)| \leq \varepsilon_{1} \quad \max _{s, a \in \mathcal{S} \times \mathcal{A}} \sum_{s^{\prime} \in \mathcal{S}}\left|\mathcal{T}\left(s^{\prime} \mid s, a\right)-\widehat{\mathcal{T}}\left(s^{\prime} \mid s, a\right)\right| \leq \varepsilon_{2} .
$$

For any policy $\pi: \mathcal{S} \rightarrow \mathcal{A}$, show that

$$
\left\|V_{\mathcal{M}}^{\pi}-V_{\mathcal{M}}^{\pi}\right\|_{\infty} \leq \frac{\varepsilon_{1}+\gamma \varepsilon_{2} V_{\mathrm{MAX}}}{(1-\gamma)}
$$

