
CS 234 Spring 2024
Assignment 1

Due: April 12 at 6:00 pm (PST)

For submission instructions, please refer to the website. For all problems, if you use an existing
result from either the literature or a textbook to solve the exercise, you need to cite the source.

1 Effect of Effective Horizon [8 pts]

Consider an agent managing inventory for a store, which is represented as an MDP. The stock level s
refers to the number of items currently in stock (between 0 and 10, inclusive). At any time, the agent
has two actions: sell (decrease stock by one, if possible) or buy (increase stock by one, if possible).

• If s > 0 and the agent sells, it receives +1 reward for the sale and the stock level transitions
to s− 1. If s = 0 nothing happens.

• If s < 9 and the agent buys, it receives no reward and the stock level transitions to s+ 1.

• The owner of the store likes to see a fully stocked inventory at the end of the day, so the agent
is rewarded with +100 if the stock level ever reaches the maximum level s = 10.

• s = 10 is also a terminal state and the problem ends if it is reached.

The reward function, denoted as r(s, a, s′), can be summarized concisely as follows:

• r(s, sell, s− 1) = 1 for s > 0 and r(0, sell, 0) = 0

• r(s, buy, s + 1) = 0 for s < 9 and r(9, buy, 10) = 100. The last condition indicates that
transitioning from s = 9 to s = 10 (fully stocked) yields +100 reward.

The stock level is assumed to always start at s = 3 at the beginning of the day. We will consider how
the agent’s optimal policy changes as we adjust the finite horizon H of the problem. Recall that the
horizon H refers to a limit on the number of time steps the agent can interact with the MDP before
the episode terminates, regardless of whether it has reached a terminal state. We will explore prop-
erties of the optimal policy (the policy that achieves highest episode reward) as the horizon H changes.

Consider, for example, H = 4. The agent can sell for three steps, transitioning from s = 3 to s = 2
to s = 1 to s = 0 receiving rewards +1, +1, and +1 for each sell action. At the fourth step, the
inventory is empty so it can sell or buy, receiving no reward regardless. Then the problem terminates
since time has expired.

1

http://web.stanford.edu/class/cs234/assignments.html

(a) Starting from the initial state s = 3, it possible to a choose a value of H that results in the
optimal policy taking both buy and sell steps during its execution? Explain why or why not.
[2 pts]

(b) For what values of H does the optimal policy reach a fully stocked inventory, starting from the
initial state s = 3? I.e. Give a range for H. Note 1: we consider the inventory fully stocked
if a buy action is chosen in state s = 9, causing a transition to s = 10. This includes the last
time step in the horizon. Note 2: By executing only buy actions, the agent can reach s = 10
from s = 3 in H = 7 steps. [2 pts]

(c) Now consider the infinite-horizon discounted setting. That is, there is no time limit – the
problem can only terminate when a terminal state is reached. Suppose γ = 0. What action
does the optimal policy take when s = 3? What action does the optimal policy take when
s = 9? [2 pts]

(d) In the infinite-horizon discounted setting, is it possible to choose a fixed value of γ ∈ [0, 1)
such that the optimal policy starting from s = 3 never fully stocks the inventory? You do not
need to propose a specific value, but simply explain your reasoning either way. [2 pts]

2

2 Reward Hacking [5 pts]

Q1 illustrates how the particular horizon and discount factor may lead to to very different policies,
even with the same reward and dynamics model. This may lead to unintentional reward hacking,
where the resulting policy does not match a human stakeholder’s intended outcome. This problem
asks you to think about an example where reward hacking may occur, introduced by Pan, Bhatia
and Steinhardt1. Consider designing RL for autonomous cars where the goal is to have decision
policies that minimize the mean commute for all drivers (those driven by humans and those driven
by AI). This reward might be tricky to specify (it depends on the destination of each car, etc) but
a simpler reward (called the reward "proxy") is to maximize the mean velocity of all cars. Now
consider a scenario where there is a single AI car (the red car in the figure) and many cars driven by
humans (the grey car).

In this setting, under this simpler "proxy" reward, the optimal policy for the red (AI) car is to
park and not merge onto the highway.2

Figure 1: Pan, Bhatia, Steinhardt ICLR 2022; https://openreview.net/pdf?id=JYtwGwIL7ye

(a) Explain why the optimal policy for the AI car is not to merge onto the highway. [2 pts]

(b) Note this behavior is not aligned with the true reward function. Share some ideas about
alternate reward functions (that are not minimizing commute) that might still be easier to
optimize, but would not result in the AI car never merging. Your answer should be 2-5
sentences and can include equations: there is not a single answer and reasonable solutions will
be given full credit. [3 pts]

1ICLR 2022 https://openreview.net/pdf?id=JYtwGwIL7ye
2Interestingly, it turns out that systems that use simpler function representations may reward hack less in this

example than more complex representations. See Pan, Bhatia and Steinhardt’s paper "The Effects of Reward
Misspecification: Mapping and Mitigating Misaligned Models" for details.

3

https://openreview.net/pdf?id=JYtwGwIL7ye
https://openreview.net/pdf?id=JYtwGwIL7ye

3 Bellman Residuals and performance bounds [30 pts]

In this problem, we will study value functions and properties of the Bellman backup operator.

Definitions: Recall that a value function is a |S|-dimensional vector where |S| is the number of
states of the MDP. When we use the term V in these expressions as an “arbitrary value function”,
we mean that V is an arbitrary |S|-dimensional vector which need not be aligned with the definition
of the MDP at all. On the other hand, V π is a value function that is achieved by some policy π in
the MDP. For example, say the MDP has 2 states and only negative immediate rewards. V = [1, 1]
would be a valid choice for V even though this value function can never be achieved by any policy
π, but we can never have a V π = [1, 1]. This distinction between V and V π is important for this
question and more broadly in reinforcement learning.

Properties of Bellman Operators: In the first part of this problem, we will explore some general
and useful properties of the Bellman backup operator, which was introduced during lecture. We
know that the Bellman backup operator B, defined below is a contraction with the fixed point as V ∗,
the optimal value function of the MDP. The symbols have their usual meanings. γ is the discount
factor and 0 ≤ γ < 1. In all parts, ∥v∥ = maxs |v(s)| is the infinity norm of the vector.

(BV)(s) = max
a

r(s, a) + γ
∑
s′∈S

p(s′|s, a)V (s′)

We also saw the contraction operator Bπ with the fixed point V π, which is the Bellman backup
operator for a particular policy given below:

(BπV)(s) = r(s, π(s)) + γ
∑
s′∈S

p(s′|s, π(s))V (s′)

In this case, we’ll assume π is deterministic, but it doesn’t have to be in general. In class, we showed
that ||BV −BV ′|| ≤ γ||V − V ′|| for two arbitrary value functions V and V ′.

(a) Show that the analogous inequality, ||BπV −BπV ′|| ≤ γ||V − V ′||, also holds. [3 pts].

(b) Prove that the fixed point for Bπ is unique. Recall that the fixed point is defined as V
satisfying V = BπV . You may assume that a fixed point exists. Hint: Consider proof by
contradiction. [3 pts].

(c) Suppose that V and V ′ are vectors satisfying V (s) ≤ V ′(s) for all s. Show that BπV (s) ≤
BπV ′(s) for all s. Note that all of these inequalities are elementwise. [3 pts].

Bellman Residuals: Having gained some intuition for value functions and the Bellman operators,
we now turn to understanding how policies can be extracted and what their performance might look
like. We can extract a greedy policy π from an arbitrary value function V using the equation below.

π(s) = argmax
a

[r(s, a) + γ
∑
s′∈S

p(s′|s, a)V (s′)]

It is often helpful to know what the performance will be if we extract a greedy policy from an
arbitrary value function. To see this, we introduce the notion of a Bellman residual.

Define the Bellman residual to be (BV − V) and the Bellman error magnitude to be ||BV − V ||.

4

(d) For what value function V does the Bellman error magnitude ∥BV − V ∥ equal 0? Why? [2
pts]

(e) Prove the following statements for an arbitrary value function V and any policy π. [5 pts]
Hint: Try leveraging the triangle inequality by inserting a zero term.

||V − V π|| ≤ ||V −BπV ||
1− γ

||V − V ∗|| ≤ ||V −BV ||
1− γ

The result you proved in part (e) will be useful in proving a bound on the policy performance in
the next few parts. Given the Bellman residual, we will now try to derive a bound on the policy
performance, V π.

(f) Let V be an arbitrary value function and π be the greedy policy extracted from V . Let
ε = ||BV − V || be the Bellman error magnitude for V . Prove the following for any state s. [5
pts]
Hint: Try to use the results from part (e).

V π(s) ≥ V ∗(s)− 2ε

1− γ

(g) Give an example real-world application or domain where having a lower bound on V π(s) would
be useful. [2 pt]

(h) Suppose we have another value function V ′ and extract its greedy policy π′. ∥BV ′ − V ′∥ =
ε = ∥BV − V ∥. Does the above lower bound imply that V π(s) = V π′

(s) at any s? [2 pts]

A little bit more notation: define V ≤ V ′ if ∀s, V (s) ≤ V ′(s).

What if our algorithm returns a V that satisfies V ∗ ≤ V ? I.e., it returns a value function that is
better than the optimal value function of the MDP. Once again, remember that V can be any vector,
not necessarily achievable in the MDP but we would still like to bound the performance of V π where
π is extracted from said V . We will show that if this condition is met, then we can achieve an even
tighter bound on policy performance.

(i) Using the same notation and setup as part (e), if V ∗ ≤ V , show the following holds for any
state s. [5 pts]
Hint: Recall that ∀π, V π ≤ V ∗. (why?)

V π(s) ≥ V ∗(s)− ε

1− γ

Intuition: A useful way to interpret the results from parts (h) (and (i)) is based on the observation
that a constant immediate reward of r at every time-step leads to an overall discounted reward of
r + γr + γ2r + . . . = r

1−γ . Thus, the above results say that a state value function V with Bellman
error magnitude ε yields a greedy policy whose reward per step (on average), differs from optimal by

5

at most 2ε. So, if we develop an algorithm that reduces the Bellman residual, we’re also able to
bound the performance of the policy extracted from the value function outputted by that algorithm,
which is very useful!

Challenges: Try to prove the following if you’re interested. These parts will not be graded.

(j) It’s not easy to show that the condition V ∗ ≤ V holds because we often don’t know V ∗ of the
MDP. Show that if BV ≤ V then V ∗ ≤ V . Note that this sufficient condition is much easier
to check and does not require knowledge of V ∗.
Hint : Try to apply induction. What is lim

n→∞
BnV ?

(k) It is possible to make the bounds from parts (i) and (j) tighter. Let V be an arbitrary value
function and π be the greedy policy extracted from V . Let ε = ||BV − V || be the Bellman
error magnitude for V . Prove the following for any state s:

V π(s) ≥ V ∗(s)− 2γε

1− γ

Further, if V ∗ ≤ V , prove for any state s

V π(s) ≥ V ∗(s)− γε

1− γ

6

4 RiverSwim MDP [25 pts]

Now you will implement value iteration and policy iteration for the RiverSwim environment (see
picture below3) of (Strehl & Littman, 2008).

Figure 2: The RiverSwim MDP where dashed and solid arrows represent transitions for the LEFT
and RIGHT actions, respectively. The assignment uses a modified, customizable version of what is
shown above where there are three different strengths (WEAK, MEDIUM, or STRONG) of the
current (transition probabilities for being pushed back or successfully swimming RIGHT).

Setup: This assignment needs to be completed with Python3 and numpy.

Submission: There is a Makefile provided that will help you submit the assignment. Please run
make clean followed by make submit in the terminal and submit the resulting zip file on Gradescope.

(a) (coding) Read through vi_and_pi.py and implement bellman_backup. Return the value
associated with a single Bellman backup performed for an input state-action pair. [4 pts]

(b) (coding) Implement policy_evaluation, policy_improvement and policy_iteration in
vi_and_pi.py. Return the optimal value function and the optimal policy. [8pts]

(c) (coding) Implement value_iteration in vi_and_pi.py. Return the optimal value function
and the optimal policy. [8 pts]

(d) (written) Run both methods on RiverSwim with a weak current strength and find the
largest discount factor (only up to two decimal places) such that an optimal agent starting
in the initial far-left state (state s1 in Figure 2) does not swim up the river (that is, does
not go RIGHT). Using the value you find, interpret why this behavior makes sense. Now
repeat this for RiverSwim with medium and strong currents, respectively. Describe and
explain the changes in optimal values and discount factors you obtain both quantitatively and
qualitatively. [5 pts]

Sanity Check: For RiverSwim with a discount factor γ = 0.99 and a weak current, the
values for the left-most and right-most states (s1 and s6 in Figure 2 above) are 30.328 and
36.859. The value functions from VI and PI should be within error tolerance 0.001 of these
values. You can use this to verify your implementation. For grading purposes, we shall test
your implementation against other hidden test cases as well.

3Figure copied from (Osband & Van Roy, 2013).

7

https://www.sciencedirect.com/science/article/pii/S0022000008000767
https://proceedings.neurips.cc/paper/2013/hash/6a5889bb0190d0211a991f47bb19a777-Abstract.html

	Effect of Effective Horizon [8 pts]
	Reward Hacking [5 pts]
	Bellman Residuals and performance bounds [30 pts]
	RiverSwim MDP [25 pts]

