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Refresh Your Knowledge. Comparing Policy Performance

Consider doing experience replay over a finite, but extremely large, set
of (s,a,r,s’) tuples). Q-learning is initialized to 0 everywhere and all
rewards are positive. Select all that are true

1 Assume all tuples were gathered from a fixed, deterministic policy π.
Then in the tabular setting, if each tuple is sampled at random and
used to do a Q-learning update, and this is repeated an infinite number
of times, then there exists a learning rate schedule so that the resulting
estimate will converge to the true Qπ.

2 In situation (1) (the first option above) the resulting Q estimate will be
identical to if one computed an estimated dynamics model and reward
model using maximum likelihood evaluation from the tuples, and
performed policy evaluation using the estimated dynamics and reward
models.

3 If one uses DQN to populate the experience replay set of tuples, then
doing experience replay with DQN is always guaranteed to converge to
the optimal Q function.

4 Not sure

Emma Brunskill (CS234 Reinforcement Learning. ) Lecture 7: Policy Gradient I 1 Winter 2023 2 / 77



Refresh Your Knowledge. Comparing Policy Performance

Consider doing experience replay over a finite, but extremely large, set
of (s,a,r,s’) tuples). Q-learning is initialized to 0 everywhere and all
rewards are positive. Select all that are true

1 Assume all tuples were gathered from a fixed, deterministic policy π.
Then in the tabular setting, if each tuple is sampled at random and
used to do a Q-learning update, and this is repeated an infinite number
of times, then there exists a learning rate schedule so that the resulting
estimate will converge to the true Qπ.

2 In situation (1) (the first option above) the resulting Q estimate will be
identical to if one computed an estimated dynamics model and reward
model using maximum likelihood evaluation from the tuples, and
performed policy evaluation using the estimated dynamics and reward
models.

3 If one uses DQN to populate the experience replay set of tuples, then
doing experience replay with DQN is always guaranteed to converge to
the optimal Q function.

4 Not sure

Emma Brunskill (CS234 Reinforcement Learning. ) Lecture 7: Policy Gradient I 1 Winter 2023 3 / 77



Last Time: We want RL Algorithms that Perform

Optimization

Delayed consequences

Exploration

Generalization

And do it statistically and computationally efficiently
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Last Time: Generalization and Efficiency

Can use structure and additional knowledge to help constrain and
speed reinforcement learning
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Class Structure

Last time: Deep RL

This time: Policy Search

Next time: Policy Search Cont.
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Policy-Based Reinforcement Learning

In the last lecture we approximated the value or action-value function
using parameters w ,

Vw (s) ≈ V π(s)

Qw (s, a) ≈ Qπ(s, a)

A policy was generated directly from the value function

e.g. using ε-greedy

In this lecture we will directly parametrize the policy, and will typically
use θ to show parameterization:

πθ(s, a) = P[a|s; θ]

Goal is to find a policy π with the highest value function V π

We will focus again on model-free reinforcement learning
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Value-Based and Policy-Based RL

Value Based

learned Value Function
Implicit policy (e.g.
ε-greedy)

Policy Based

No Value Function
Learned Policy

Actor-Critic

Learned Value Function
Learned Policy
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Types of Policies to Search Over

So far have focused on deterministic policies or ε-greedy policies

Now we are thinking about direct policy search in RL, will focus
heavily on stochastic policies
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Example: Rock-Paper-Scissors

Two-player game of rock-paper-scissors

Scissors beats paper
Rock beats scissors
Paper beats rock

Let state be history of prior actions (rock, paper and scissors) and if
won or lost

Is deterministic policy optimal? Why or why not?
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Example: Rock-Paper-Scissors, Vote

Two-player game of rock-paper-scissors

Scissors beats paper
Rock beats scissors
Paper beats rock

Let state be history of prior actions (rock, paper and scissors) and if
won or lost
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Example: Aliased Gridword (1)

The agent cannot differentiate the grey states

Consider features of the following form (for all N, E, S, W)

φ(s, a) = 1(wall to N, a = move E)

Compare value-based RL, using an approximate value function

Qθ(s, a) = f (φ(s, a); θ)

To policy-based RL, using a parametrized policy

πθ(s, a) = g(φ(s, a); θ)
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Example: Aliased Gridworld (2)

Under aliasing, an optimal deterministic policy will either

move W in both grey states (shown by red arrows)
move E in both grey states

Either way, it can get stuck and never reach the money

Value-based RL learns a near-deterministic policy

e.g. greedy or ε-greedy

So it will traverse the corridor for a long time
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Example: Aliased Gridworld (3)

An optimal stochastic policy will randomly move E or W in grey states

πθ(wall to N and S, move E) = 0.5

πθ(wall to N and S, move W) = 0.5

It will reach the goal state in a few steps with high probability

Policy-based RL can learn the optimal stochastic policy
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Policy Objective Functions

Goal: given a policy πθ(s, a) with parameters θ, find best θ

But how do we measure the quality for a policy πθ?

In episodic environments can use policy value at start state V (s0, θ)

For simplicity, today will mostly discuss the episodic case, but can
easily extend to the continuing / infinite horizon case
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Policy optimization

Policy based reinforcement learning is an optimization problem

Find policy parameters θ that maximize V (s0, θ)
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Policy optimization

Policy based reinforcement learning is an optimization problem

Find policy parameters θ that maximize V (s0, θ)

Can use gradient free optimization

Hill climbing
Simplex / amoeba / Nelder Mead
Genetic algorithms
Cross-Entropy method (CEM)
Covariance Matrix Adaptation (CMA)
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Human-in-the-Loop Exoskeleton Optimization (Zhang et
al. Science 2017)

Figure: Zhang et al. Science 2017

Optimization was done using CMA-ES, variation of covariance matrix
evaluation
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Gradient Free Policy Optimization

Can often work embarrassingly well: ”discovered that evolution
strategies (ES), an optimization technique that’s been known for
decades, rivals the performance of standard reinforcement learning
(RL) techniques on modern RL benchmarks (e.g. Atari/MuJoCo)”
(https://blog.openai.com/evolution-strategies/)
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Gradient Free Policy Optimization

Often a great simple baseline to try

Benefits

Can work with any policy parameterizations, including
non-differentiable
Frequently very easy to parallelize

Limitations

Typically not very sample efficient because it ignores temporal structure
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Policy optimization

Policy based reinforcement learning is an optimization problem

Find policy parameters θ that maximize V (s0, θ)

Can use gradient free optimization:

Greater efficiency often possible using gradient

Gradient descent
Conjugate gradient
Quasi-newton

We focus on gradient descent, many extensions possible

And on methods that exploit sequential structure
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Policy Gradient

Define V (θ) = V (s0, θ) to make explicit the dependence of the value
on the policy parameters [but don’t confuse with value function
approximation, where parameterized value function]

Assume episodic MDPs (easy to extend to related objectives, like
average reward)
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Policy Gradient

Define V πθ = V (s0, θ) to make explicit the dependence of the value
on the policy parameters

Assume episodic MDPs

Policy gradient algorithms search for a local maximum in V (s0, θ) by
ascending the gradient of the policy, w.r.t parameters θ

∆θ = α∇θV (s0, θ)

Where ∇θV (s0, θ) is the policy gradient

∇θV (s0, θ) =


∂V (s0,θ)
∂θ1
...

∂V (s0,θ)
∂θn


and α is a step-size parameter
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Example: Training AIBO to Walk by Finite Difference
Policy Gradient1

Goal: learn a fast AIBO walk (useful for Robocup)

Adapt these parameters by finite difference policy gradient

Evaluate performance of policy by field traversal time

1Kohl and Stone. Policy gradient reinforcement learning for fast quadrupedal
locomotion. ICRA 2004. http://www.cs.utexas.edu/ ai-lab/pubs/icra04.pdf
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Summary of Benefits of Policy-Based RL

Advantages:

Better convergence properties

Effective in high-dimensional or continuous action spaces

Can learn stochastic policies

Disadvantages:

Typically converge to a local rather than global optimum

Evaluating a policy is typically inefficient and high variance

Shortly will see some ideas to help with this last limitation
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Computing the gradient analytically

We now compute the policy gradient analytically

Assume policy πθ is differentiable whenever it is non-zero

Assume we can calculate gradient ∇θπθ(s, a) analytically

What kinds of policy classes can we do this for?
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Differentiable Policy Classes

Many choices of differentiable policy classes including:

Softmax
Gaussian
Neural networks
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Notation: Score Function

A score function is the derivative of the log of a parameterized
probability / likelihood

Example: let p(s; θ) be the probability of state s under parameter θ

Then the score function would be

∇θ log p(s; θ) (1)
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Softmax Policy

Weight actions using linear combination of features φ(s, a)T θ

Probability of action is proportional to exponentiated weight

πθ(s, a) = eφ(s,a)
T θ/(

∑
a

eφ(s,a)
T θ)

The score function is ∇θ log πθ(s, a) =
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Softmax Policy

Weight actions using linear combination of features φ(s, a)T θ

Probability of action is proportional to exponentiated weight

πθ(s, a) = eφ(s,a)
T θ/(

∑
a

eφ(s,a)
T θ)

The score function is

∇θ log πθ(s, a) = φ(s, a)− Eπθ [φ(s, ·)]
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Gaussian Policy

In continuous action spaces, a Gaussian policy is natural

Mean is a linear combination of state features µ(s) = φ(s)T θ

Variance may be fixed σ2, or can also parametrised

Policy is Gaussian a ∼ N (µ(s), σ2)

The score function is

∇θ log πθ(s, a) =
(a− µ(s))φ(s)

σ2

Emma Brunskill (CS234 Reinforcement Learning. ) Lecture 7: Policy Gradient I 1 Winter 2023 35 / 77



Value of a Parameterized Policy

Now assume policy πθ is differentiable whenever it is non-zero and we
know the gradient ∇θπθ(s, a)

Recall policy value is V (s0, θ) = Eπθ
[∑T

t=0 R(st , at);πθ, s0
]

where

the expectation is taken over the states & actions visited by πθ
We can re-express this in multiple ways

V (s0, θ) =
∑

a πθ(a|s0)Q(s0, a, θ)
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Value of a Parameterized Policy

Now assume policy πθ is differentiable whenever it is non-zero and we
know the gradient ∇θπθ(s, a)

Recall policy value is V (s0, θ) = Eπθ
[∑T

t=0 R(st , at);πθ, s0
]

where

the expectation is taken over the states & actions visited by πθ
We can re-express this in multiple ways

V (s0, θ) =
∑

a πθ(a|s0)Q(s0, a, θ)
V (s0, θ) =

∑
τ P(τ ; θ)R(τ)

where τ = (s0, a0, r0, ..., sT−1, aT−1, rT−1, sT ) is a state-action
trajectory,
P(τ ; θ) is used to denote the probability over trajectories when
executing policy π(θ) starting in state s0, and
R(τ) =

∑T
t=0 R(st , at) the sum of rewards for a trajectory τ

To start will focus on this latter definition. See Chp 13.1-13.3 of SB
for a nice discussion starting with the other definition
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Likelihood Ratio Policies

Denote a state-action trajectory as
τ = (s0, a0, r0, ..., sT−1, aT−1, rT−1, sT )

Use R(τ) =
∑T

t=0 R(st , at) to be the sum of rewards for a trajectory τ

Policy value is

V (θ) = Eπθ

[
T∑
t=0

R(st , at);πθ

]
=
∑
τ

P(τ ; θ)R(τ)

where P(τ ; θ) is used to denote the probability over trajectories when
executing policy π(θ)

In this new notation, our goal is to find the policy parameters θ:

arg max
θ

V (θ) = arg max
θ

∑
τ

P(τ ; θ)R(τ)
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Likelihood Ratio Policy Gradient

Goal is to find the policy parameters θ:

arg max
θ

V (θ) = arg max
θ

∑
τ

P(τ ; θ)R(τ)

Take the gradient with respect to θ:

∇θV (θ) = ∇θ
∑
τ

P(τ ; θ)R(τ)
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Likelihood Ratio Policy Gradient

Goal is to find the policy parameters θ:

arg max
θ

V (θ) = arg max
θ

∑
τ

P(τ ; θ)R(τ)

Take the gradient with respect to θ:

∇θV (θ) = ∇θ
∑
τ

P(τ ; θ)R(τ)

=
∑
τ

∇θP(τ ; θ)R(τ)

=
∑
τ

P(τ ; θ)

P(τ ; θ)
∇θP(τ ; θ)R(τ)

=
∑
τ

P(τ ; θ)R(τ)
∇θP(τ ; θ)

P(τ ; θ)︸ ︷︷ ︸
likelihood ratio

=
∑
τ

P(τ ; θ)R(τ)∇θ logP(τ ; θ)
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Likelihood Ratio Policy Gradient

Goal is to find the policy parameters θ:

arg max
θ

V (θ) = arg max
θ

∑
τ

P(τ ; θ)R(τ)

Take the gradient with respect to θ:

∇θV (θ) =
∑
τ

P(τ ; θ)R(τ)∇θ logP(τ ; θ)

Approximate with empirical estimate for m sample trajectories under
policy πθ:

∇θV (θ) ≈ ĝ = (1/m)
m∑
i=1

R(τ (i))∇θ logP(τ (i); θ)
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Decomposing the Trajectories Into States and Actions

Approximate with empirical estimate for m sample paths under policy
πθ:

∇θV (θ) ≈ ĝ = (1/m)
m∑
i=1

R(τ (i))∇θ logP(τ (i))

∇θ logP(τ (i); θ) =
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Decomposing the Trajectories Into States and Actions

Approximate with empirical estimate for m sample paths under policy
πθ:

∇θV (θ) ≈ ĝ = (1/m)
m∑
i=1

R(τ (i))∇θ logP(τ (i))

∇θ logP(τ (i); θ) = ∇θ log

 µ(s0)︸ ︷︷ ︸
Initial state distrib.

T−1∏
t=0

πθ(at |st)︸ ︷︷ ︸
policy

P(st+1|st , at)︸ ︷︷ ︸
dynamics model


= ∇θ

[
logµ(s0) +

T−1∑
t=0

log πθ(at |st) + logP(st+1|st , at)

]

=
T−1∑
t=0

∇θ log πθ(at |st)︸ ︷︷ ︸
no dynamics model required!
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Score Function

Consider score function as ∇θ log πθ(s, a)
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Likelihood Ratio / Score Function Policy Gradient

Putting this together

Goal is to find the policy parameters θ:

arg max
θ

V (θ) = arg max
θ

∑
τ

P(τ ; θ)R(τ)

Approximate with empirical estimate for m sample paths under policy
πθ using score function:

∇θV (θ) ≈ ĝ = (1/m)
m∑
i=1

R(τ (i))∇θ logP(τ (i); θ)

= (1/m)
m∑
i=1

R(τ (i))
T−1∑
t=0

∇θ log πθ(a
(i)
t |s

(i)
t )

Do not need to know dynamics model
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Score Function Gradient Estimator: Intuition

Consider generic form of R(τ (i))∇θ logP(τ (i); θ):
ĝi = f (xi )∇θ log p(xi |θ)

f (x) measures how good the sample x is.

Moving in the direction ĝi pushes up the logprob of the sample, in
proportion to how good it is

Valid even if f (x) is discontinuous, and unknown, or sample space
(containing x) is a discrete set
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Score Function Gradient Estimator: Intuition

ĝi = f (xi )∇θ log p(xi |θ)
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Score Function Gradient Estimator: Intuition

ĝi = f (xi )∇θ log p(xi |θ)
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Policy Gradient Theorem

The policy gradient theorem generalizes the likelihood ratio approach

Theorem

For any differentiable policy πθ(s, a),
for any of the policy objective function J = J1, (episodic reward), JavR
(average reward per time step), or 1

1−γ JavV (average value),
the policy gradient is

∇θJ(θ) = Eπθ [∇θ log πθ(s, a)Qπθ(s, a)]

Chapter 13.2 in SB has a nice derivation of the policy gradient
theorem for episodic tasks and discrete states

Emma Brunskill (CS234 Reinforcement Learning. ) Lecture 7: Policy Gradient I 1 Winter 2023 49 / 77



Table of Contents

Differentiable Policies

4 Policy Gradient Algorithms and Reducing Variance
Temporal Structure
Baseline
Alternatives to MC Returns

Emma Brunskill (CS234 Reinforcement Learning. ) Lecture 7: Policy Gradient I 1 Winter 2023 50 / 77



Table of Contents

Differentiable Policies

4 Policy Gradient Algorithms and Reducing Variance
Temporal Structure
Baseline
Alternatives to MC Returns

Emma Brunskill (CS234 Reinforcement Learning. ) Lecture 7: Policy Gradient I 1 Winter 2023 51 / 77



Likelihood Ratio / Score Function Policy Gradient

∇θV (θ) ≈ (1/m)
m∑
i=1

R(τ (i))
T−1∑
t=0

∇θ log πθ(a
(i)
t |s

(i)
t )

Unbiased but very noisy

Fixes that can make it practical

Temporal structure
Baseline

Next time will discuss some additional tricks
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Policy Gradient: Use Temporal Structure

Previously:

∇θEτ [R] = Eτ

[(
T−1∑
t=0

rt

)(
T−1∑
t=0

∇θ log πθ(at |st)

)]
We can repeat the same argument to derive the gradient estimator for
a single reward term rt′ .

∇θE[rt′ ] = E

[
rt′

t′∑
t=0

∇θ log πθ(at |st)

]
Summing this formula over t, we obtain

V (θ) = ∇θE[R] = E

[
T−1∑
t′=0

rt′
t′∑

t=0

∇θ log πθ(at |st)

]

= E

[
T−1∑
t=0

∇θ log πθ(at , st)
T−1∑
t′=t

rt′

]
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Policy Gradient: Use Temporal Structure

Recall for a particular trajectory τ (i),
∑T−1

t′=t r
(i)
t′ is the return G

(i)
t

∇θE[R] ≈ (1/m)
m∑
i=1

T−1∑
t=0

∇θ log πθ(at , st)G
(i)
t
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Monte-Carlo Policy Gradient (REINFORCE)

Leverages likelihood ratio / score function and temporal structure

∆θt = α∇θ log πθ(st , at)Gt

REINFORCE:
Initialize policy parameters θ arbitrarily
for each episode {s1, a1, r2, · · · , sT−1, aT−1, rT} ∼ πθ do
for t = 1 to T − 1 do
θ ← θ + α∇θ log πθ(st , at)Gt

endfor
endfor
return θ
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Likelihood Ratio / Score Function Policy Gradient

∇θV (θ) ≈ (1/m)
m∑
i=1

R(τ (i))
T−1∑
t=0

∇θ log πθ(a
(i)
t |s

(i)
t )

Unbiased but very noisy

Fixes that can make it practical

Temporal structure
Baseline
Alternatives to using Monte Carlo returns R(τ (i)) as targets
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Desired Properties of a Policy Gradient RL Algorithm

Goal: Converge as quickly as possible to a local optima

Incurring reward / cost as execute policy, so want to minimize number
of iterations / time steps until reach a good policy
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Policy Gradient: Introduce Baseline

Reduce variance by introducing a baseline b(s)

∇θEτ [R] = Eτ

[
T−1∑
t=0

∇θ log π(at |st ; θ)

(
T−1∑
t′=t

rt′ − b(st)

)]

For any choice of b, gradient estimator is unbiased.

Near optimal choice is the expected return,

b(st) ≈ E[rt + rt+1 + · · ·+ rT−1]

Interpretation: increase logprob of action at proportionally to how
much returns

∑T−1
t′=t rt′ are better than expected
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Baseline b(s) Does Not Introduce Bias–Derivation

Eτ [∇θ log π(at |st ; θ)b(st)]

= Es0:t ,a0:(t−1)

[
Es(t+1):T ,at:(T−1)

[∇θ log π(at |st ; θ)b(st)]
]
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Baseline b(s) Does Not Introduce Bias–Derivation

Eτ [∇θ log π(at |st ; θ)b(st)]

= Es0:t ,a0:(t−1)

[
Es(t+1):T ,at:(T−1)

[∇θ log π(at |st ; θ)b(st)]
]

(break up expectation)

= Es0:t ,a0:(t−1)

[
b(st)Es(t+1):T ,at:(T−1)

[∇θ log π(at |st ; θ)]
]

(pull baseline term out)

= Es0:t ,a0:(t−1)
[b(st)Eat [∇θ log π(at |st ; θ)]] (remove irrelevant variables)

= Es0:t ,a0:(t−1)

[
b(st)

∑
a

πθ(at |st)
∇θπ(at |st ; θ)

πθ(at |st)

]
(likelihood ratio)

= Es0:t ,a0:(t−1)

[
b(st)

∑
a

∇θπ(at |st ; θ)

]

= Es0:t ,a0:(t−1)

[
b(st)∇θ

∑
a

π(at |st ; θ)

]
= Es0:t ,a0:(t−1)

[b(st)∇θ1]

= Es0:t,a0:(t−1) [b(st) · 0] = 0
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”Vanilla” Policy Gradient Algorithm

Initialize policy parameter θ, baseline b
for iteration=1, 2, · · · do

Collect a set of trajectories by executing the current policy
At each timestep t in each trajectory τ i , compute

Return G i
t =

∑T−1
t′=t r

i
t′ , and

Advantage estimate Âi
t = G i

t − b(st).
Re-fit the baseline, by minimizing

∑
i

∑
t ||b(st)− G i

t ||2,
Update the policy, using a policy gradient estimate ĝ ,

Which is a sum of terms ∇θ log π(at |st , θ)Ât .
(Plug ĝ into SGD or ADAM)

endfor
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Other Choices for Baseline?

Initialize policy parameter θ, baseline b
for iteration=1, 2, · · · do

Collect a set of trajectories by executing the current policy
At each timestep t in each trajectory τ i , compute

Return G i
t =

∑T−1
t′=t r

i
t′ , and

Advantage estimate Âi
t = G i

t − b(st).
Re-fit the baseline, by minimizing

∑
i

∑
t ||b(st)− G i

t ||2,
Update the policy, using a policy gradient estimate ĝ ,

Which is a sum of terms ∇θ log π(at |st , θ)Ât .
(Plug ĝ into SGD or ADAM)

endfor
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Choosing the Baseline: Value Functions

Recall Q-function / state-action-value function:

Qπ(s, a) = Eπ
[
r0 + γr1 + γ2r2 · · · |s0 = s, a0 = a

]
State-value function can serve as a great baseline

V π(s) = Eπ
[
r0 + γr1 + γ2r2 · · · |s0 = s

]
= Ea∼π[Qπ(s, a)]
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Likelihood Ratio / Score Function Policy Gradient

Recall last time:

∇θV (θ) ≈ (1/m)
m∑
i=1

R(τ (i))
T−1∑
t=0

∇θ log πθ(a
(i)
t |s

(i)
t )

Unbiased estimate of gradient but very noisy

Fixes that can make it practical

Temporal structure (discussed last time)
Baseline
Alternatives to using Monte Carlo returns G i

t as estimate of
expected discounted sum of returns for the policy parameterized
by θ?
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Choosing the Target

G i
t is an estimation of the value function at st from a single roll out

Unbiased but high variance

Reduce variance by introducing bias using bootstrapping and function
approximation

Just like in we saw for TD vs MC, and value function approximation
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Actor-critic Methods

Estimate of V /Q is done by a critic

Actor-critic methods maintain an explicit representation of policy
and the value function, and update both

A3C (Mnih et al. ICML 2016) is a very popular actor-critic method
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Policy Gradient Formulas with Value Functions

Recall:

∇θEτ [R] = Eτ

[
T−1∑
t=0

∇θ log π(at |st ; θ)

(
T−1∑
t′=t

rt′ − b(st)

)]

∇θEτ [R] ≈ Eτ

[
T−1∑
t=0

∇θ log π(at |st ; θ) (Q(st , at ; w)− b(st))

]
Letting the baseline be an estimate of the value V , we can represent
the gradient in terms of the state-action advantage function

∇θEτ [R] ≈ Eτ

[
T−1∑
t=0

∇θ log π(at |st ; θ)Âπ(st , at)

]

where the advantage function Aπ(s, a) = Qπ(s, a)− V π(s)
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Choosing the Target: N-step estimators

∇θV (θ) ≈ (1/m)
m∑
i=1

T−1∑
t=0

R i
t∇θ log πθ(a

(i)
t |s

(i)
t )

Note that critic can select any blend between TD and MC estimators
for the target to substitute for the true state-action value function.
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Choosing the Target: N-step estimators

∇θV (θ) ≈ (1/m)
m∑
i=1

T−1∑
t=0

R i
t∇θ log πθ(a

(i)
t |s

(i)
t )

Note that critic can select any blend between TD and MC estimators
for the target to substitute for the true state-action value function.

R̂
(1)
t = rt + γV (st+1)

R̂
(2)
t = rt + γrt+1 + γ2V (st+2) · · ·

R̂
(inf)
t = rt + γrt+1 + γ2rt+2 + · · ·

If subtract baselines from the above, get advantage estimators

Â
(1)
t = rt + γV (st+1)−V (st)

Â
(inf)
t = rt + γrt+1 + γ2rt+1 + · · · −V (st)

Emma Brunskill (CS234 Reinforcement Learning. ) Lecture 7: Policy Gradient I 1 Winter 2023 73 / 77



Check Your Understanding: Blended Advantage Estimators

∇θV (θ) ≈ (1/m)
m∑
i=1

T−1∑
t=0

R i
t∇θ log πθ(a

(i)
t |s

(i)
t )

If subtract baselines from the above, get advantage estimators

Â
(1)
t = rt + γV (st+1)−V (st)

Â
(inf)
t = rt + γrt+1 + γ2rt+1 + · · · −V (st)

Select all that are true

Â
(1)
t has low variance & low bias.

Â
(1)
t has high variance & low bias.

Â
(∞)
t low variance and high bias.

Â
(∞)
t high variance and low bias.

Not sure
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Check Your Understanding: Blended Advantage Estimators
Answers

∇θV (θ) ≈ (1/m)
m∑
i=1

T−1∑
t=0

R i
t∇θ log πθ(a

(i)
t |s

(i)
t )

If subtract baselines from the above, get advantage estimators

Â
(1)
t = rt + γV (st+1)−V (st)

Â
(inf)
t = rt + γrt+1 + γ2rt+1 + · · · −V (st)

Solution: Â
(1)
t has low variance & high bias. Â

(∞)
t high variance but

low bias.
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”Vanilla” Policy Gradient Algorithm

Initialize policy parameter θ, baseline b
for iteration=1, 2, · · · do

Collect a set of trajectories by executing the current policy
At each timestep t in each trajectory τ i , compute

Advantage estimate Âi
t

Update the policy, using a policy gradient estimate ĝ ,
Which is a sum of terms ∇θ log π(at |st , θ)Ât .
(Plug ĝ into SGD or ADAM)

endfor
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Class Structure

Last time: Deep Model-free Value Based RL

This time: Policy Search

Next time: Policy Search Cont.
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