Object detection and algorithms for efficient inference

Hyun Oh Song
CS23 IM - Mobile computer vision
April 29, 2015

Contents

- Sliding window object detection
- Deformable part models
- Cascade DPM
- Sparselets
- Hashing based

Background: Object Detection

Input

Desired output

Sliding window classification

Evaluating a detector

Test image (previously unseen)

Detections

\square 'person' detector predictions

Compared to ground truth

\square 'person' detector predictions
\square ground truth 'person' boxes

Evaluation metric $=\mathrm{AP}$

PASCALVOC Challenge

Dataset: 22k images, 50k objects, 20 classes

Detect: people, horses, sofas, bicycles, pottedplants, ...

Contents

- Sliding window object detection
- Deformable part models
- Cascade DPM
- Sparselets
- Hashing based

Deformable part models

model

Star models

test image

part-based deformable model

detection

Object hypothesis score

Ω set of (x, y, scale) part locations $m_{i}(\omega)$ score of i-th part at $\omega \in \Omega$
Δ set of ($d x, d y$) part displacements
$d_{i}(\delta) \quad$ cost of moving i-th part by $\delta \in \Delta$

$$
\operatorname{score}\left(\omega, \delta_{1}, \ldots, \delta_{n}\right)=
$$

$$
m_{0}(\omega)+\sum_{i=1}^{n} m_{i}\left(a_{i}(\omega)+\delta_{i}\right)-d_{i}\left(\delta_{i}\right)
$$

Object hypothesis score

Ω set of (x, y, scale) part locations $m_{i}(\omega)$ score of i-th part at $\omega \in \Omega$
Δ set of $(d x, d y)$ part displacements
$d_{i}(\delta) \quad$ cost of moving i-th part by $\delta \in \Delta$
$\operatorname{score}\left(\omega, \delta_{1}, \ldots, \delta_{n}\right)=$

$$
m_{0}(\omega)+\sum_{i=1}^{n} m_{i}\left(a_{i}(\omega)+\delta_{i}\right)-d_{i}\left(\delta_{i}\right)
$$

Object hypothesis score

Ω set of (x, y, scale) part locations $m_{i}(\omega)$ score of i-th part at $\omega \in \Omega$
Δ set of $(d x, d y)$ part displacements
$d_{i}(\delta) \quad$ cost of moving i-th part by $\delta \in \Delta$
$\operatorname{score}\left(\omega, \delta_{1}, \ldots, \delta_{n}\right)=$

$$
m_{0}(\omega)+\sum_{i=1}^{n} m_{i}\left(a_{i}(\omega)+\delta_{i}\right)-d_{i}\left(\delta_{i}\right)
$$

Object hypothesis score

Ω set of (x, y, scale) part locations $m_{i}(\omega)$ score of i-th part at $\omega \in \Omega$
Δ set of $(d x, d y)$ part displacements
$d_{i}(\delta) \quad$ cost of moving i-th part by $\delta \in \Delta$
$\operatorname{score}\left(\omega, \delta_{1}, \ldots, \delta_{n}\right)=$

$$
m_{0}(\omega)+\sum_{i=1}^{n} m_{i}\left(a_{i}(\omega)+\delta_{i}\right)-d_{i}\left(\delta_{i}\right)
$$

Object hypothesis score

Ω set of (x, y, scale) part locations $m_{i}(\omega)$ score of i-th part at $\omega \in \Omega$
Δ set of ($d x, d y$) part displacements
$d_{i}(\delta) \quad$ cost of moving i-th part by $\delta \in \Delta$
$\operatorname{score}\left(\omega, \delta_{1}, \ldots, \delta_{n}\right)=$

$$
m_{0}(\omega)+\sum_{i=1}^{n} m_{i}\left(a_{i}(\omega)+\delta_{i}\right)-d_{i}\left(\delta_{i}\right)
$$

score of root

Object hypothesis score

Ω set of (x, y, scale) part locations $m_{i}(\omega)$ score of i-th part at $\omega \in \Omega$
Δ set of $(d x, d y)$ part displacements
$d_{i}(\delta) \quad$ cost of moving i-th part by $\delta \in \Delta$
$\operatorname{score}\left(\omega, \delta_{1}, \ldots, \delta_{n}\right)=$

$$
m_{0}(\omega)+\sum_{i=1}^{n} m_{i}\left(a_{i}(\omega)+\delta_{i}\right)-d_{i}\left(\delta_{i}\right)
$$

sum over non-root parts

Object hypothesis score

Ω set of (x, y, scale) part locations $m_{i}(\omega)$ score of i-th part at $\omega \in \Omega$
Δ set of ($d x, d y$) part displacements
$d_{i}(\delta) \quad$ cost of moving i-th part by $\delta \in \Delta$
$\operatorname{score}\left(\omega, \delta_{1}, \ldots, \delta_{n}\right)=$

$$
m_{0}(\omega)+\sum_{i=1}^{n} m_{i}\left(a_{i}(\omega)+\delta_{i}\right)-d_{i}\left(\delta_{i}\right)
$$

score of i-th part at displaced location

Object hypothesis score

Ω set of (x, y, scale) part locations $m_{i}(\omega)$ score of i-th part at $\omega \in \Omega$
Δ set of ($d x, d y$) part displacements
$d_{i}(\delta) \quad$ cost of moving i-th part by $\delta \in \Delta$
$\operatorname{score}\left(\omega, \delta_{1}, \ldots, \delta_{n}\right)=$

$$
m_{0}(\omega)+\sum_{i=1}^{n} m_{i}\left(a_{i}(\omega)+\delta_{i}\right)-d_{i}\left(\delta_{i}\right)
$$

Object hypothesis score

$$
\begin{aligned}
\operatorname{score}(\omega) & =m_{0}(\omega)+\sum_{i=1}^{n} \operatorname{score}_{i}\left(a_{i}(\omega)\right) \\
\operatorname{score}_{i}(\eta) & =\max _{\delta_{i} \in \Delta}\left(m_{i}\left(\eta+\delta_{i}\right)-d_{i}\left(\delta_{i}\right)\right)
\end{aligned}
$$

Maximize over part displacements

Object hypothesis score

$$
\begin{aligned}
\operatorname{score}(\omega) & =m_{0}(\omega)+\sum_{i=1}^{n} \operatorname{score}_{i}\left(a_{i}(\omega)\right) \\
\operatorname{score}_{i}(\eta) & =\max _{\delta_{i} \in \Delta}\left(m_{i}\left(\eta+\delta_{i}\right)-d_{i}\left(\delta_{i}\right)\right)
\end{aligned}
$$

anchor position of i-th part

Maximize over part displacements

Object hypothesis score

$$
\operatorname{score}(\omega)=m_{0}(\omega)+\sum_{i=1}^{n} \operatorname{score}_{i}\left(a_{i}(\omega)\right)
$$

$$
\operatorname{score}_{i}(\eta)=\max _{\delta_{i} \in \Delta}\left(m_{i}\left(\eta+\delta_{i}\right)-d_{i}\left(\delta_{i}\right)\right)
$$

optimal appearance/displacement tradeoff

Maximize over part displacements

Contents

- Sliding window object detection
- Deformable part models
- Cascade DPM
- Sparselets

Star cascade ingredients

I. A hierarchy of models defined by a part ordering

2. A sequence of thresholds: $t=\left(\left(t_{1}^{\prime}, t_{1}\right), \ldots,\left(t_{n}^{\prime}, t_{n}\right)\right)$

$$
\begin{aligned}
m_{0}(\omega) \stackrel{?}{\leq} t_{1} & \rightarrow \text { prune } \omega \\
\forall \delta_{1}: m_{0}(\omega)-d_{1}\left(a_{1}(\omega) \oplus \delta_{1}\right) \stackrel{?}{\leq} t_{1}^{\prime} & \rightarrow \text { prune } \delta_{1} \\
m_{0}(\omega)-d_{1}\left(a_{1}(\omega) \oplus \delta_{1}^{*}\right)+m_{1}\left(a_{1}(\omega) \oplus \delta_{1}^{*}\right) \stackrel{?}{\leq} t_{2} & \rightarrow \text { prune } \omega
\end{aligned}
$$

$\forall \delta_{2}: m_{0}(\omega)-d_{1}\left(a_{1}(\omega) \oplus \delta_{1}^{*}\right)+m_{1}\left(a_{1}(\omega) \oplus \delta_{1}^{*}\right)-d_{2}\left(a_{2}(\omega) \oplus \delta_{2}\right) \stackrel{?}{\leq} t_{2}^{\prime} \quad \rightarrow$ prune δ_{2}

Star cascade algorithm

test image

object model + part ordering

+ thresholds

Star cascade algorithm

Star cascade algorithm

Star cascade algorithm

Root
 $m_{0}(\omega)$

filter score tables

cascade test:

model:

operation:

slide credit: Girshick et al

Star cascade algorithm

filter score tables

cascade test:

model:

operation:

slide credit: Girshick et al

Star cascade algorithm

filter score tables

cascade test:

model:

operation: test root locations

Star cascade algorithm

filter score tables

Star cascade algorithm

filter score tables

cascade test: $m_{0}(\omega) \geq t_{1}$

model:

operation: test root locations
result: fail

Star cascade algorithm

filter score tables

cascade test: $m_{0}(\omega) \geq t_{1}$

model:

operation: test root locations
result: fail

Star cascade algorithm

filter score tables

Root

$m_{0}(\omega)$

cascade test: $m_{0}(\omega) \geq t_{1}$

model:

operation: test root locations
result: fail

Star cascade algorithm

filter score tables

Root

$m_{0}(\omega)$

cascade test: $m_{0}(\omega) \geq t_{1}$

model:

operation: test root locations
result: fail

Star cascade algorithm

filter score tables

Root
 $m_{0}(\omega)$

Part I
 $m_{1}(\omega)$

Part 2

$m_{2}(\omega)$

cascade test: $m_{0}(\omega) \geq t_{1}$

model:

operation: test root locations

slide credit: Girshick et al

Star cascade algorithm

filter score tables

cascade test: $m_{0}(\omega)-d_{1}\left(\delta_{1}\right) \geq t_{1}^{\prime}$
model:

operation: displacement search

slide credit: Girshick et al

Star cascade algorithm

filter score tables

Root

$m_{0}(\omega)$

cascade test: $m_{0}(\omega)-d_{1}\left(\delta_{1}\right) \geq t_{1}^{\prime}$
model:

operation: displacement search

Star cascade algorithm

filter score tables

Root
 $m_{0}(\omega)$
 Part I
 $m_{1}(\omega)$
 Part 2

$m_{2}(\omega)$

cascade test: $m_{0}(\omega)-d_{1}\left(\delta_{1}\right) \geq t_{1}^{\prime}$

model:

operation: displacement search

Star cascade algorithm

filter score tables

Root

$m_{0}(\omega)$

Part I

$m_{1}(\omega)$

Part 2

$m_{2}(\omega)$

Star cascade algorithm

filter score tables

Root
 $m_{0}(\omega)$

Part I
 $m_{1}(\omega)$

Part 2

$m_{2}(\omega)$

cascade test: $m_{0}(\omega) \geq t_{1}$

model:

operation: test root locations

slide credit: Girshick et al

Star cascade algorithm

filter score tables

Part 2

$m_{2}(\omega)$

operation: displacement search

Star cascade algorithm

filter score tables

cached!

Part I

$m_{1}(\omega)$

cascade test: $m_{0}(\omega)-d_{1}\left(\delta_{1}\right) \geq t_{1}^{\prime}$

Part 2

$m_{2}(\omega)$
model:

operation: displacement search

Star cascade algorithm

filter score tables

Root

$m_{0}(\omega)$

Part I

$m_{1}(\omega)$

cascade test: $m_{0}(\omega)-d_{1}\left(\delta_{1}^{*}\right)+m_{1}\left(\omega \oplus \delta_{1}^{*}\right) \geq t_{2}$

model:

operation: test partial score
result: pass

Star cascade algorithm

filter score tables

cascade test: $m_{0}(\omega)-d_{1}\left(\delta_{1}^{*}\right)+m_{1}\left(\omega \oplus \delta_{1}^{*}\right)-d_{2}\left(\delta_{2}\right) \geq t_{3}^{\prime}$ model:

operation: displacement search

Star cascade algorithm

filter score tables

cascade test: $m_{0}(\omega)-d_{1}\left(\delta_{1}^{*}\right)+m_{1}\left(\omega \oplus \delta_{1}^{*}\right)-d_{2}\left(\delta_{2}\right) \geq t_{3}^{\prime}$

operation: displacement search
result: pass

slide credit: Girshick et al

Star cascade algorithm

filter score tables

cascade test: $m_{0}(\omega)-d_{1}\left(\delta_{1}^{*}\right)+m_{1}\left(\omega \oplus \delta_{1}^{*}\right)-d_{2}\left(\delta_{2}^{*}\right)+m_{2}\left(\omega \oplus \delta_{2}^{*}\right) \geq t_{3}$

operation: test partial score
result: pass

slide credit: Girshick et al

Star cascade algorithm

filter score tables

cascade test: ...

model:

operation: continue testing remaining parts

Star cascade algorithm

filter score tables

cascade test: all tests passed => detection!

operation: report object hypothesis

slide credit: Girshick et al

Star cascade algorithm

filter score tables

Root

$m_{0}(\omega)$

cascade test:
model:

operation: continue with root locations...

Threshold selection

don't prune many true positives

We want safe and effective thresholds
but do prune lots of true negatives

PAA threshold

$$
\begin{aligned}
X & =\text { IID set of positive examples } \sim D \\
\operatorname{error}(t) & =P_{x \sim D}(\operatorname{cascade-score}(t, \omega) \neq \operatorname{score}(\omega))
\end{aligned}
$$

Probably Approximately Admissible thresholds

provably sofe $\longrightarrow P(\operatorname{error}(t)>\epsilon) \leq \delta$

min of partial scores over examples in X

Theorem: $|X| \geq 2 n / \epsilon \ln (2 n / \delta) \Longrightarrow(\epsilon, \delta)-$ PAA thresholds

Example results

high recall

PASCAL 2007 comp3 class: motorbike

23.2x faster
(618ms per/image)

less recall \Rightarrow faster

PASCAL 2007 comp3 class: motorbike

31.6x faster
(454ms per/image)

Discussion

Contents

- Sliding window object detection
- Deformable part models
- Cascade DPM
- Sparselets
- Hashing based

Generalized Sparselet Models for Real-Time Multiclass Object Recognition

Hyun Oh Song, Ross Girshick, Stefan Zickler, Christopher Geyer, Pedro Felzenszwalb,Trevor Darrell

ECCVI2, ICMLI3, TPAMII4

Goal

- Shared predictive model with sparse activation vectors
- Efficient inference for linear structured output predictors
- Example application: realtime object recognition in CV, faster retrieval in IR, etc.

Related works

- Learning shared low dimensional predictive structure (e.g., Ando and Zhang, JMLR05)
- Shared part models (Steerable part models, Pirsiavash et al)

Deformable part models

model

Sparselet review

Set of model filters
Set of sparselet filters

$$
\begin{aligned}
& \mathcal{W}=\left\{\mathbf{w}_{\mathbf{1}}, \ldots, \mathbf{w}_{\mathbf{K}}\right\} \\
& \mathcal{S}=\left\{\mathbf{s}_{\mathbf{1}}, \ldots, \mathbf{s}_{\mathbf{d}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \min _{\alpha_{i j}, s_{j}} \sum_{i=1}^{K}\left\|\mathbf{w}_{i}-\sum_{j=1}^{d} \alpha_{i j} \mathbf{s}_{j}\right\|_{2}^{2} \\
& \text { subject to }\left\|\boldsymbol{\alpha}_{\boldsymbol{i}}\right\|_{0} \leq \epsilon \quad \forall i=1, \ldots, K \\
&\left\|\mathbf{s}_{j}\right\|_{2}^{2} \leq 1 \quad \forall j=1, \ldots, d
\end{aligned}
$$

Sparse reconstruction of filter response

Matrix factorization point of view

$$
\begin{aligned}
& {\left[\begin{array}{c}
\Psi * \mathbf{w}_{1}- \\
-\Psi * \mathbf{w}_{2}- \\
\vdots \\
\vdots \\
\vdots \\
\vdots \\
-\Psi * \mathbf{w}_{K}-
\end{array}\right] } \approx\left[\begin{array}{c}
{\left[\begin{array}{c}
-\alpha_{1}- \\
-\alpha_{2}- \\
\vdots \\
\vdots \\
\vdots \\
-\alpha_{K}-
\end{array}\right]}
\end{array}\right. \\
& 80 \sim 99 \% \text { Sparse }
\end{aligned}
$$

System concept

Blocked representation

- Intuition: model weights might be composed of shared building blocks/tiles

Blocked representation

Fixed precomputation time and reconstruction time

Object categories
Fixed representation space and reconstruction time

Fix dictionary size

Reconstruction error for all 20 object categories from PASCAL 2007 dataset as sparselet parameters are varied. The precomputation time is fixed in the top figure and the representation space is fixed on the bottom. Object categories are sorted by the reconstruction error by 6×6 in the top figure and by 1×1 in the bottom figure.

Blocked representation

- Empirically, filter reconstruction error always decreases as we decrease sparselet size (@ fixed computation time)
- However, the space required to store the intermediate representation is proportional to the sparselet dictionary size $|S|$. This means we have computation time VS memory bandwidth tradeoff.

Visualized sparselet blocks on HOG

(Left) Sparselet dictionary of size 128
(Right) Top 16 activated sparselets for PASCAL motorcycle class

Blocked representation

$$
f_{\mathbf{w}}(\mathbf{x})=\underset{k \in\{1, \ldots, K\}}{\operatorname{argmax}} \mathbf{w}_{k}^{\top} \mathbf{x}
$$

Model parameterization

$$
\mathbf{w}_{k}=\left(\mathbf{b}_{k 1}^{\top}, \ldots, \mathbf{b}_{k p}^{\top}\right)^{\top}
$$

Data parameterization

$$
\mathbf{x}=\left(\mathbf{c}_{1}^{\top}, \ldots, \mathbf{c}_{p}^{\top}\right)^{\top}
$$

Sparselets approximation of model blocks

$$
\mathbf{b} \approx \mathbf{S} \boldsymbol{\alpha}=\sum_{\substack{i=1 \\ \alpha_{i} \neq 0}}^{d} \alpha_{i} \mathbf{s}_{i}
$$

Sparselets: $\mathbf{S}=\left[\mathbf{s}_{1}, \ldots, \mathbf{s}_{d}\right]$

Sparselet Demo

Demo specifications

- Alienware laptop with NVIDIA GeForce GTX580 with 3GB memory
- Runs all 20 PASCAL category detection @

5 Hz (frames per second)

- Full specs and quantitative average precision results in Song et al, TPAMII5
- CPU version of the source code available at https://github.com/rksltn//sparselet-release I

Potential mobile implementation

- NVIDIA Shield supports CUDA with < 2GB memory
- ARM NEON optimizations on CPU side

Discriminative sparselet activation

$$
f_{\mathbf{w}}(\mathbf{x})=\underset{k \in\{1, \ldots, K\}}{\operatorname{argmax}} \mathbf{w}_{k}^{\top} \mathbf{x}
$$

Original w_{k}

(i) Reconstructive ECCV 12

Sparselet approximation w_{k}
(ii) Discriminative ICML 13

Learning parameterization

$$
\begin{gathered}
\mathbf{w}_{k}^{\top} \mathbf{x}=\left(\mathbf{b}_{k 1}^{\top}, \ldots, \mathbf{b}_{k p}^{\top}\right)\left(\mathbf{c}_{1}^{\top}, \ldots, \mathbf{c}_{p}^{\top}\right)^{\top} \\
=\sum_{i=1}^{p} \mathbf{b}_{k i}^{\top} \mathbf{c}_{i} \approx \sum_{i=1}^{p}\left(\mathbf{S} \boldsymbol{\alpha}_{k i}\right)^{\top} \mathbf{c}_{i}=\sum_{i=1}^{p} \boldsymbol{\alpha}_{k i}^{\top}\left(\mathbf{S}^{\top} \mathbf{c}_{i}\right) \\
\text { Model parameter: sparse activation vector }
\end{gathered}
$$

Feature: sparselet response

Structural SVM for DAS

Parameter vector
 $$
\boldsymbol{\beta}=\left(\boldsymbol{\alpha}^{\boldsymbol{\top}}, \tilde{\mathbf{w}}^{\boldsymbol{\top}}\right)^{\top}
$$

Transformed features

$$
\tilde{\boldsymbol{\Phi}}_{k}(x, y)=\left(\mathbf{c}_{1}^{\top} S, \ldots, \mathbf{c}_{p_{k}}^{\top} S\right)^{\top}
$$

Aggregate feature vector

$$
\begin{gathered}
\tilde{\boldsymbol{\Phi}}(x, y)=\left(\tilde{\boldsymbol{\Phi}}_{1}^{\top}(x, y), \ldots, \tilde{\boldsymbol{\Phi}}_{s}^{\top}(x, y),{\left.\underset{\boldsymbol{\Phi}}{s+1} \boldsymbol{\top}(x, y), \ldots, \boldsymbol{\Phi}_{K}^{\top}(x, y)\right)^{\top}}_{\text {projected feature slot }}^{\text {remainder feature slot }}\right.
\end{gathered}
$$

Training

Discriminative activation of sparselets

$$
\boldsymbol{\beta}^{*}=\underset{\boldsymbol{\beta}}{\operatorname{argmin}} \frac{R(\boldsymbol{\alpha})}{\boldsymbol{\uparrow}}+\frac{\lambda}{2}\|\tilde{\mathbf{w}}\|_{2}^{2}+\frac{1}{M} \sum_{i=1}^{M} \max _{\hat{y} \in \mathcal{Y}}\left(\boldsymbol{\beta}^{\boldsymbol{\top}} \tilde{\boldsymbol{\Phi}}\left(x_{i}, \hat{y}\right)+\Delta\left(y_{i}, \hat{y}\right)\right)-\boldsymbol{\beta}^{\boldsymbol{\top}} \tilde{\boldsymbol{\Phi}}\left(x_{i}, y_{i}\right)
$$

- Sparsity inducing norm

Sparsity enforcing norms

I. Lasso penalty $\quad R_{\text {Lasso }}(\boldsymbol{\alpha})=\lambda_{1}\|\boldsymbol{\alpha}\|_{1}$
II. Elastic net penalty $\quad R_{\mathrm{EN}}(\boldsymbol{\alpha})=\lambda_{1}\|\boldsymbol{\alpha}\|_{1}+\lambda_{2}\|\boldsymbol{\alpha}\|_{2}^{2}$
III. Combined ℓ_{0} and ℓ_{2} penalty $\quad R_{0,2}(\boldsymbol{\alpha})=\lambda_{2}\|\boldsymbol{\alpha}\|_{2}^{2}$ subject to $\|\boldsymbol{\alpha}\|_{0} \leq \lambda_{0}$ III-A. Overshoot, rank, and threshold (ORT)

III-B. Orthogonal matching pursuit (OMP)

Joint feature map:

 multiclass classification$$
\begin{aligned}
& \mathbf{w}=\left(\mathbf{w}_{1}^{\top}, \ldots, \mathbf{w}_{K}^{\top}\right)^{\top} \\
& \mathbf{\Phi}(\mathbf{x}, k)=\left(0, \ldots, 0, \mathbf{x}^{\top}, 0, \ldots, 0\right)^{\top} \\
& \text { feature installed in slot } k \\
& \text { class index } \\
& \text { feature }
\end{aligned}
$$

Inference $\quad f_{\mathbf{w}}(\mathbf{x})=\underset{k}{\operatorname{argmax}} \mathbf{w}^{\top} \mathbf{\Phi}(\mathbf{x}, k)$

Joint feature map:

 multiclass classification with sparselets$$
\boldsymbol{\beta}=\left(\boldsymbol{\alpha}_{1}^{\top}, \ldots, \boldsymbol{\alpha}_{K}^{\top}, \tilde{\mathbf{w}}_{1}^{\top}, \ldots, \tilde{\mathbf{w}}_{K}^{\top}\right)^{\top}
$$

projected feature blocks installed in slot k class index

Inference

$$
f_{\boldsymbol{\beta}}(\mathbf{x})=\underset{k}{\operatorname{argmax}} \boldsymbol{\beta}^{\boldsymbol{\top}} \tilde{\mathbf{\Phi}}(\mathbf{x}, k)
$$

Object detection with HOG+SVM

Joint feature map: object detection

$$
\begin{aligned}
& \mathbf{w}=\left(\mathbf{w}_{1}^{\top}, \ldots, \mathbf{w}_{K}^{\top}\right)^{\top} \\
& \mathbf{\Phi}(\mathbf{x},(k, y))=\left(0, \ldots, 0, \mathbf{x}_{y: n}^{\top}, 0, \ldots, 0\right)^{\top}
\end{aligned}
$$

length n window at position y in slot k
\longrightarrow position in the pyramid class index
feature pyramid

Inference

$$
f_{\mathbf{w}}(\mathbf{x})=\underset{k, y}{\operatorname{argmax}} \mathbf{w}^{\top} \boldsymbol{\Phi}(\mathbf{x},(k, y))
$$

Joint feature map:

object detection with sparselets

$\boldsymbol{\beta}=\left(\boldsymbol{\alpha}_{1}^{\top}, \ldots, \boldsymbol{\alpha}_{K}^{\top}, \underline{\tilde{\mathbf{w}}_{\mathbf{w}}^{\top}}, \ldots, \tilde{\mathbf{w}}_{K}^{\top}\right)^{\top}$
 installed in slot k
position in the pyramid class index
feature pyramid
Inference $\quad f_{\mathcal{\beta}}(\mathbf{x})=\underset{k, y}{\operatorname{argmax}} \boldsymbol{\beta}^{\boldsymbol{\top}} \tilde{\Phi}(\mathbf{x},(k, y))$

Computational cost analysis

$$
\text { Speedup }=\frac{\text { Original classifier cost }}{\text { Sparselet shared cost }+ \text { Sparse reconstruction }}=\frac{Q m}{d m+Q \lambda_{0}}
$$

- To achieve speedup, number of sparselets should be small. $Q>d$
- Activation sparsity λ_{0} dominates the speedup as Q grows.

Experiment I - Run Time

Run time comparison for DPM implementation on GPU, reconstructive sparselets and discriminatively activated sparselets in contrast to CPU cascade.

Experiment 2 - PASCAL detection

PASCAL VOC 2007 object detection

Experiment 3 - ImageNet detection

ImageNet object detection (9 classes)

Experiment 4 - Caltech IOIClassification

Caltech-101

Experiment 5 - Caltech 256Classification

Caltech-256

Discussion

Contents

- Sliding window object detection
- Deformable part models
- Cascade DPM
- Sparselets
- Hashing based

Hashing part filters

Sparse activation map

Object parts from

 all classes
Conclusion

- Surveyed sliding window object detection
- Various methods exist for speeding up the inference time (not training time)
- For fast training, LDA HOG (Hariharan, ECCVI2) works well.

