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Abstract 

 
The subjective nature of pain makes an objective measurement difficult to produce. If such a 

measurement is possible, then this knowledge would assist in the management of patients whose self 

report of pain is either unavailable or called into question. Past studies have demonstrated that 

chronic pain is associated with gray matter (GM) atrophy, detectable by magnetic resonance imaging. 

We investigate to see if this decline of GM density can be used to distinguish between healthy and 

chronic low back pain (LBP) subjects with greater than chance accuracy. Structural MR scans from 

94 age and gender matched subjects were used. Several feature selection and reduction methods were 

performed, including grid and ROI parcellation, principal component analysis (PCA), and ranking by 

mutual information. Accuracy, assessed with both 1-norm and 2-norm SVM using striated 10-fold 

cross-validation, while significant, were low and corresponding features driving the classifier were 

inconsistent. Parcellation gave a high of 64% accuracy, while PCA and MI gave 95% and 97%, 

respectively. 

 

1. Introduction  

 

An estimated 50 million Americans suffer 
from chronic pain, and the costs of low back 
pain in the United States exceed $100 billion 
per year (1). Since pain is subjective, 
self-reported pain cannot be verified. Because of 
this, an objective measure of pain could assist in 
the management of patients who are suspected 
of malingering or drug seeking and of patients 
unable to communicate such as the critically ill. 
Studies have shown that regional changes in 
gray matter density resulting from chronic pain 
are detectable by MRI (2) (3).  

Recently, machine learning techniques have 
been adopted in the field of neuroimaging in an 
attempt to learn about cognitive science and to 
detect conditions based on imaging data. Some 
examples include the detection of Alzheimer's 
and Huntington's disease using SVMs and gray 
matter density as features (1) (2). However, 
applications to detection of diseases such as 
Alzheimer's and Huntington's are fairly trivial 
tasks due to the etiology of the disease and its 

tremendous effect on the structure of the brain 
with time. The etiology of chronic pain is 
relatively more complicated. The differences in 
the type of pain have been shown to affect the 
underlying biological changes. For instance, 
Apkarian demonstrated a larger decline in gray 
matter density with neuropathic chronic pain 
patients versus nonneuropathic patients through 
Voxel Based Morphometry (VBM) analysis 
techniques (3). 

VBM is currently the standard method used 
to study differences in tissue classes between 
subjects with structural MRI data (4). It 
essentially allows voxel-by-voxel comparison of 
subjects by transforming each brain to a 
template and then performing statistical tests on 
the voxel level. The advantage of using an SVM 
as opposed to traditional techniques of VBM is 
that an SVM is can capture higher dimensional 
relationships within the data, rather than 
comparing between individual voxels as in 
VBM. In addition, SVMs allow for 
classification of one sample, whereas VBM 
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analyses are generally limited to comparisons 
between groups of subjects. 
 

2. Materials and Methods  

 

2.1. Dataset 

 

The dataset includes 94 gender and 
age-matched subjects (47 controls, 47 patients). 
Chronic pain patients were defined as having 
greater than 6 months of pain. Each scan was 
segmented into gray matter and normalized to 
the MNI template. Each example contained 
roughly 300,000 features, with each feature 
corresponding to the gray matter density at a 
particular voxel. Each feature was normalized to 
a Euclidean distance of 1. 

 
2.2. Feature Selection and Reduction 

 

Four different feature reduction/selection 
methods were employed: Two types of 
parcellation, principal components, and ranking 
based on mutual information.  
 
2.2.1. Grid parcellation  
 

Each gray matter map was divided into 
5x5x5 voxel volumes, and the gray matter 
density averaged within each. Each volume 
represented 1 cm3 cubes. To prevent skewed 
volumes, volumes with fewer than 10 voxels 
were averaged into the nearest volume with 
greater than or equal to 10 voxels. This method 
reduced the number of features to roughly 2100.  
 

2.2.2. AAL Parcellation  
 

The Automatic Anatomical Labeling 
template divides the brain into 116 different 
ROIs based on anatomical structure. Each gray 
matter map was divided into these ROIs and the 
gray matter density averaged within each, 
producing 116 features.  

 

2.2.3. Principal components  
 

Principal component analysis (PCA) was 
used to determine the directionality of the 
training data. The dataset was transformed into 
principal component space, consisting of 93 PCs. 
The weights of the feature vector, corresponding 
to weights of each principal component, was 
transformed back into brain space by a 
multiplication by the eigenvectors (principal 
components) and the most highly weighted 
individual voxels were found. This method is 
similar to that employed in (5). 
 
2.2.4. Mutual Information  

 
Mutual information (MI) was calculated for 

each of the original voxels with the labels. 
Intensity values were discretized to 100 values 
in the range [0, 1] and label {-1, 1}. Ranking 
was performed using a forward search wrapper 
method, adding the highest MI valued features 
at a time until the error from leave-one-out 
cross-validation (LOOCV) increased. This 
resulted in the selection of 55 individual voxels. 

 
2.3. Classification 

 
Both an L1 and L2 regularized SVM (with a 

linear kernel) was used with each feature 
reduction method. The MATLAB SVM 
implementation was developed by Anton 
Schwaighofer and other code was based on 
in-house implementations. C parameter 
selection was done using a standard grid search. 
10-fold striated cross-validation was used to 
assess the performance of the classifier. Striated 
k-fold cross-validation involves selecting an 
equal ratio of examples from each class 
representative of the dataset on a whole and has 
been shown to be more accurate at assessing 
performance (7). 

The significance of the performance was 
assessed using a Monte Carlo permutation test, 
iterated 1000 times. This test involves 
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permuting the labels and rerunning the training 
and testing to determine if the separation was 
based on meaningful patterns between the two 
classes. 

 
2.4. Regression 

 

Linear regression was performed using 
elastic net regularization with grid parcellated 
features. A MATLAB implementation of Least 
Angle Regression (LARS) by Sjöstrand was 
used. The dependent variable was the duration 
in pain (years). The model was trained on 70% 
of the data and tested on the remaining 30%. 
The resulting beta weights were used to 
determine the volumes driving the classifier. 
 

3. Results 

 

3.1. Classification Accuracies 

 

Accuracies for grid and AAL parcellation 
were marginally better than chance. Feature 
reduction by PCA resulted in high accuracies, as 
well as selection of voxels by computation of 
the MI values (Table 1). With PCA, 100% 
accuracy was achieved based on the first 93 
principal components, and 97% with MI. The 
linear regression by elastic net resulted in a sum 
of squared errors of 5.29 (years). 

Differences in classification accuracy 
between 1-norm and 2-norm SVMs were 
marginal at best. 

 
3.2. Neuronal correlates 

 
The weights obtained by training with the 

SVM indicate the features most important in 
determining whether an example belongs to a 
specific class. For AAL parcellation, highly 
weighted features include the right pallidum 
(Figure 1a). For grid parcellation, the highly 
weighted features includes a section of the left 
thalamus, a part of the ventromedial prefrontal 
cortex (VMPC), and a part of the dorsolateral 

 
 

 
 
 
 
prefrontal cortex (DLPC) (Figure 1b). PCA and 
MI gave individual voxels that were delocalized 
throughout the brain (not shown). Regression by 
elastic net performed on grid parcellated 
features have similarities to the weights given 
by training with the SVM (Figure 1c). 

 

4. Discussion 

 

The accuracies obtained for parcellation are 
poor, but because it is significant, this indicates 
that something can be learned about the dataset 
provided. 

The AAL template is commonly used to 
select predefined ROIs, but the lack of 
specificity may explain the low accuracy. The 
large divisions of the brain will mask any 
regional differences within each ROI. For 
instance, different parts of the cingulate cortex 
are known to have different functions, so 
grouping them all and averaging their gray 
matter densities may smooth out any existing 
differences. Nonetheless, areas that are much 
smaller are captured by the AAL divisions, such 
as the pallidum. Since the pallidum is involved 
in thalamic pathways, such as inhibiting the 
relaying of sensory stimuli from specific nuclei, 
overstimulation may lead to changes. 

 

Feature Selection  
Method 

1-norm  
SVM  

2-norm  
SVM  

Grid (1700) 64% 61% 

AAL (116) 62% 64% 

PCA (93) 100% 100% 

MI (55) 97% 96% 

Table 1. Classification accuracies based on 

feature selection methods (with its 

corresponding number of features) and 1, 

2-norm SVMs. All values are significant p<0.05 
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a)  

b)  

c)  

 
 
 
 
 
Grid parcellation was motivated by prior 

knowledge about the functions of anatomical 
parts in the brain. With chronic pain, certain 
structural areas of the brain are expected to be 
affected. Thus, parcellation into 1 cm3 volumes 
is small enough to capture areas of interest. The 
thalamus is believed to be a site that relays 
sensory information received from the body 
towards different cortices in the brain and is 
believed to play a role in mediating pain signals 
(7) (8) (9). Nociceptive stimuli synapse at the 
thalamus before being sent to parts of the 
prefrontal cortex. For this reason, an overload of 
sensory stimulus at the thalamus can cause a 
decrease in gray matter density, a result of 
suppressed neuronal activity from a decrease in 

membrane receptors, neuronal cell degeneration, 
or neuron apoptosis. The prefrontal cortex has 
also been shown to mediate chronic pain. 
Decreases in DLPC gray matter density align 
with previous findings (3).   

Principal component analysis enables very 
high accuracy when performed on the original 
features. Upon transformation of the weight 
vector back into brain space, the individual 
voxels that were highly weighted were 
delocalized and did not show any 
comprehensible pattern. The first principal 
component explains only 18% of the variance, 
and subsequent components much less. The 
need for many components to explain the data 
may indicate a low signal to noise ratio, and the 
components may not capture conditions inherent 
in the underlying condition.  

Feature ranking by mutual information was 
performed on the original feature set, and, 
through cross-validation, resulted in the 
selection of 55 individual voxels. These voxels 
were, similar to the PCA results, scattered 
throughout the brain and were unhelpful in 
determining correlations with chronic pain and 
brain structure. 

The use of a 1-norm SVM has been shown 
to give better performance in the presence of 
feature redundancies (10). Thus, if multiple 
areas of the brain undergo atrophy, then this 
would be a redundant feature and performance 
should improve with the use of an L1 norm 
penalty. Although a 1-norm SVM gave higher 
accuracies in certain cases, the improvement 
was marginal at best. 

Since duration of chronic pain also helps 
determine the amount of gray matter loss (3), a 
regression where the dependent variable is 
duration of pain may help determine areas of the 
brain affected by LBP. The elastic net is a 
regularization and variable selection method 
that represents the data as a sparse matrix where 
a limited number of features are given weights 
and is thus useful when the number of 
predictors is greater than the number of 

Figure 1. Highly weighted features by a) AAL 

parcellation  b) grid parcellation and c) elastic net 

regression 
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examples (14). The resulting beta weights 
closely aligned with the results from grid 
parcellation, indicating that those features are 
important in determining both the duration of 
pain with regression and the presence of chronic 
pain with classification. 

Future directions would be to obtain more 
data in order to increase the signal to noise ratio. 
Furthermore, manual feature selection by 
defining ROIs may prove helpful. For instance, 
ROIs of the left thalamus, DLPC, and VMPC 
and classifying based only on voxels in those 
areas may be interesting. In addition, LBP 
encompasses a fairly large array of conditions, 
and each of these conditions may have different 
effects on the brain. A narrower subset of 
patients may help in classification.  
 

5. Conclusion  

 

Although classification accuracy was low 
for parcellated features, the resulting weights 
indicate that decreased gray matter density in 
the left thalamus, DLPC, and VLPC help predict 
incidence of chronic pain. The low accuracy of 
parcellation methods and the high accuracy of 
PCA and MI performed on original voxels 
indicate a low signal to noise ratio in the data 
possibly a result of the variability in the 
underlying LBP conditions. Better feature 
reduction methods, such as manual selection of 
ROIs, may be performed and more data 
gathered in order to reduce this noise. 
Nonetheless, the significance of the values gives 
a promising outlook that gray matter density 
may be used to detect chronic pain. 
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