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Motivation 
In recent years, there have been many advances in the technology used to interact with computers, video 
game consoles, etc. including touch screens and input through use of accelerometers (Nintendo Wii).  An 
natural extension to this trend is to enable human computer interaction though simple hand gestures and 
body movements.  We set out to tackle a sub-problem of this task, detecting and classifying different hand 
configurations from low resolution depth sensor data.  Naturally, with a good a hand configuration 
classifier, sequences of these configurations can be detected to identify full hand gestures.  Applications of 
such a technology are widespread, including automatic sign language interpretation and computer and 
video game interaction. 
 
Data Source 
As our source of data, we're using the SwissRanger 4000, the 4th generation of series of Time-of-Flight 
cameras put out by Mesa Imaging.  The camera uses infared light and measures phase differences in order 
to get an accurate measure of depth.  Its output is a stream of frames, where each frames consists of 
a144x176 pixel image, and each pixel has an associated intensity and depth. 
 
Problem 
The problem we set out to solve was to detect and classifier different hand configurations from still frames 
of this data source.  To simplify the problem, we focused on classifying two hand poses -- "opened" and 
"closed" hands -- but we allowed for a lot of variations in terms of the distance from the sensor, the 
orientation, and the angle from which we viewed the hand.  The goal was to build a relatively robust 
classifier to differentiate between opened and closed hands in a variety of environments. 
 
The End-to-End System 
In the end-to-end system, we envision there being three major components: 
1) Localize the hand (or hands) in the image, identifying the "sub-image" containing the hand 
2) Recognize the configuration of the hand in the sub-image 
3) Use sequences of hand configurations over time to recognize and classify full hand gestures 
 
As mentioned above, for this project, we primarily focused on 2), manually labeling hand locations to feed 
into the recognition algorithm. 

Data set 
Our data set consisted of 162 still frames taken from our sensor, with the hand appearing at varying 
distances and orientations.  All images contained a hand in either a closed or opened configuration. 
 
Data Pre-processing 
In a pre-processing step, we chose the region of interest from the full image based on a location which has 
manually input and a window size which was chosen based on the depth in the region around the hand.  
During this stage, we also labeled the hand configurations.  All the data outside the region of interest was 
discarded, and all the data within the region of interest, including the intensity and depth at each pixel, was 
passed onto the next stage. 
 



Feature Extraction 
There were several types of features we developed, a few of which are described below. 

2d shape-based features  

These features typically used the depth information primarily to do segmentation, and then looked at the 
resulting contours in 2d space.  In a few cases, we computed a mask binary image indicating which pixels 
fell within a certain bounding box of in the z-coordinate of the hand, and then used this mask image to 
derive features.  Two of our more valuable features that came out of this process are described in more 
below. 
 
Size-based features 
One advantage of using a depth sensor is that we know an absolute measure of the scale of objects, since 
distances are no longer ambiguous (as they would be for a regular image).  One idea was to use this as 
feature for classification, leveraging properties such as an open hand having more surface area exposed 
than a closed hand.  Although these size-based features did add some value to our model, we found that in 
many cases, if the arm leading up to the hand was at a similar depth to the rest of the hand, this would get 
included in our segmentation and would shift this surface area measurement substantially.  From looking 
through some of our failure cases, we found that these size based features were often too sensitive to what 
exactly was included in our region of interest. 
 
Frequency-based features 
Another observation we had is that an open hand (with fingers spread) has much higher frequency content 
than a closed hand.  We developed a few different features to capture this effect.  First, we computed the 2d 
discrete Fourier transforms of our images and used the Fourier transform weights as features.  On their 
own, these features did add signal towards classifying open vs. closed hands, but we found that adding 
these features in addition to the 2d-shape based features described above added only a marginal gain.  From 
this we concluded that our 2d shaped based features were, in effect, capturing some of this frequency 
content indirectly. 
 

Specific Shape Features 
The starting point for feature extraction for these features was the images depicted in sections (d) and (e) of 
Figure 1 below, after segmenting based on depth info and removing some of the noise in the image.  Some 
of our priorities in our search for features that were scale and rotation invariant, and also resistant to small 
changes in the location and shape of the hand.  We suspected that this would make it easier to properly 
detect open and closed hand configurations in different orientations. Below we describe two major features 
we have used so far which meet the above criteria.  

 
Centroid distance histogram 
We first computed the centroid of the white pixels, and then collected the distance between the centroid and 
each of the edge pixel in the image. To make this process scale invariant, the distance was normalized by 
diving each distance with the max distance. These distances were then bucketed and used as input features.  
Note that this process is invariant to scale and rotational changes.  

Edge pixel max distance histogram 
Similarly, this feature calculated the distance of an edge pixel with each other edge pixel in the image, and 
took the max across all these distances. This information captures some aspects of the shape of the hand.  
The resulting information about each pixel was again normalized using the max distance, and bucketed as 
our feature values.  Similarly, this feature is also scale and rotationally invariant. 
 



Learning algorithms tested 
Although we tried a few different learning algorithms, we seemed to be getting the best results with SVMs 
so we focused our energy primarily on them.  We trained our SVM using a linear kernel. 
 
Figure 1 - Mask Images 

 
(a) Original Image  

 
(b) After using 
depth information  

  

(c) After running 
density mask  

 
(d) Remove small 
blobs  

 
 
(e) After canny edge 
detection  

 
Figure 2 - Histograms 
 

  

Feature 1  

  

Feature 2  
 
Evaluation 
To evaluate each of our models, we used K-fold cross validation with K = 10.  We computed the test error 
for each of these 10 trials, and then computed the overall test error and test error variance as the mean and 
variance of these values, respectively.  We chose our features and our parameters to maximize this overall 
test error. 
 

 

 



Results  

The table below summarizes our results.  We've included the test accuracy of our model as each different 
feature type was added.  That is, the test accuracy in the first row indicates that only discrete fourier 
transform feature was used. The second row indicates that the first two features were used, etc..  

Feature Added  Test Accuracy    Variance of Test Accuracy  
Discrete Fourier Transform  0.6294  0.0130  
Edge distance of Each pixel from 
other pixels  

0.8574  0.0045  

Distance of Centroid from Edge 
Pixels  

0.9010  0.0089  

Measuring size of hand  0.9254  0.0068  
Error Analysis 
 
 

  

Figure 3 - 
The graph on the right is a plot of 
the training and the test error, as 
the number of training examples is 
increased. The green line indicates 
the test error, and the blue line 
indicates the training error. The 
graph starts from plotting the 
training error when 40 examples 
were taken for training, and ends 
when 160 examples were taken for 
training. It can be seen that the 
test error decreases as the number 
of examples used for training 
increases.  

 
A few examples of images which we classified incorrectly are included below.                     Figure 4 

Wrong Mask Detection  Error due to wrong 
depth estimation  Noise outside the hand  Features couldn't 

differentiate  

        

        



We analyzed the data which we got incorrect, and classified the reason of error into four parts. The four 
parts are 
1) Wrong Mask Detection --  This is the case when there is error in the way mask is calculated. As it can be 
seen, in this image, the fingers got eliminated from the open hand during mask generation, and thus, this 
image looks more like a closed hand to the SVM classifier. 
2) Error due to wrong depth Estimation -- This is the case when the sensor gave incorrect information about 
the depth in a particular region. This lead to classification of the hand as the background, and the 
background as the hand. As a result, the classifier was trying to classify incorrect data. 
3) Noise outside hand -- This type of image image might be resulting due to one of out strong features. One 
of the features calculates the distance of each edge pixel from other edge pixels. The seems to be a lot of 
noise below the hand. Moreover, a part of the wrist is not detected, and thus giving it a weird shape below 
the hand. This results in the wrong classification by one of the features, which might be making the 
classifier have a wrong output. 
4) SVM failing due to more than one of the above problems -- This last error type is when the classification 
fails due to multiple reasons. For example, this image has noise around it, after noise reduction, and there 
are holes in the middle of the wrist, which might mislead the SVM classifier. 
    
Conclusions and Future Work 
Our analysis above has shown that with a few carefully chosen features, we can derive a model of high 
accuracy to predict between two different hand configurations.  The majority of our features above used an 
image representation as a starting point (after using depth data for segmentation) but several other features 
can be derived from the 3d representation of the data directly -- and this is an area we'd like to further 
explore.  There are also several other directions we'd like to take this in terms of future work.  First, 
naturally we'd like to extend this work to classify a larger number of hand configurations.  Additionally, 
although we built some of our features into a real-time demo in C++, most of our features above are only 
implemented in Matlab, and we'd like to move these features over so we can do more accurate 
classification real-time.  Finally, we'd like to work more on the hand localization tasks and gesture 
recognition in order to develop the full end-to-end real-time system.  
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