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1 Introduction 
 
Developing a new SVM algorithm is ongoing research topic. Among many exiting SVM 
algorithms, we will focus on Pegasos. Pegasos uses alternating iteration schemes, which 
are by alternating stochastic gradient descent steps and projection step. The Pegasos can 
solve a text classification problem from Reuters Corpus Volume 1 with 800,000 training 
examples in 5 seconds. We will examine the algorithms robustness by applying the 
algorithm to rather simple text classification problem (namely, the one given in the cs229 
homework 2). We also present three possible variants of Pegasos; namely, undo method, 
two-out method and probability method. We will examine con and pro of each method. 

 
2 Algorithm description 
 
2.1 Pegasos 
The Pegasos is a subgradient based algorithm that minimizes the following unconstrained 
strictly convex objective function. 
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However, it does not use eq(1) as an objective function at each iteration. Instead, it uses 
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where a set
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A S⊆ whose size is k and S, a training set. The Pegasos consists of two major 
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2.2 A Variant of Pegasos 
A key point in a variant of pegasos is how to deal with outliers in training set, S. There are 
outliers in S. These outliers result in increase in objective function value in some iteration 

since pegasos chooses 
t

A  i.i.d. from S. To prevent this, three methods are used; 1. Undo 

method 2. two-out method and 3. probability method. A modification from pegasos is applied 

at the end of iteration when 
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updated as in undo method. The probability method is similar to the two-out method. The 

difference is in how to update S. In the probability method, for each data, ( , )
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A . The variant algorithm is shown below. 
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3 Result 
 
First of all, we downloaded the Pegasos source code from http://www.cs.huji.ac.il/ 
shais/code/index.html. There are three sample sets of training data and one test data set: 
One training set of size 2000, two other sets of musch smaller size and a test set of size 600. 
One interesting characteristic of this data set is that l2 norm of every data is one. This puts all 
the data onto the surface of 2 spheres. We needed to look for more general data sets which 
do not exhibit such a characteristic. Thus, we use the training set and test sets given for 
cs229 homework #2. The size of training set is 2144 and test set has size of 800. 
One of the interesting characteristics of the Pegasos is that we have a control on the size of

t
A , which is k. If k = 1, then Pegasos is very similar to stochastic gradient method. If k S= , 



then it results in a modified gradient-descent algorithm. 
 

3.1 undo method 
What the undo method actually dose in subgradient based algorithm is to prevent the ascent 
direction. Please see fig.(1) and (2). In the beginning of the iterations, the undo method 
seems to do much better than the pegasos. However, as the iteration reaches the point 
close to the convergence region, the pegasos does better than undo method. This result is 
analogs to the comparison between steepest descent algorithm and conjugate gradient 
method. Although the steepest descent may exhibit better performance in the beginning of 
iterations, the one that wins the performance is conjugate gradient method. The lesson here 
is that allowing ascent direction sometimes can be poison at that moment, but can be 
medicine. As described in algorithm description section, we combined the undo, two-out, and 
probability method and the result is that the undo method is dominant in choosing the search 
direction. In fig.(3) and (4), all the three methods (i.e. undo method, undo-probability 
combined method, and undo-probability-two out combined method exhibit almost identical 
performance). 
 

3.2 two-out method 
Since we’ve found that the undo method should not be used, we decided not to use it in both 

two-out method and probability method. Thus, in two-out method, although 
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in some t, we keep the wt+1 as updated. Only thing we change is to update S every iteration 
by eliminating data whose flag is equal to two. The result is almost identical to the original 
pegasos method. (i.e. see the fig.(5) and (6). We strongly suspect that the reason for the 
almost identical result is that the training set we have (i.e. the size of about 2000) is too 
small to take an advantage of two-out method. To take an advantage of two-out method, we 
need enough iteration to get rid of outliers. The average number of data taken away from the 
training set until convergence is around 80. Among 80 data, there may be good data in it. It 
is because taking away the data whose number of flag is two is too cruel. Thus, we took 
away the data whose number of flag is four. Then, however, the number of data taken away 
from the training set is very small (i.e. zero, one or two until the convergence). The reason 
that we have hope in this method is that even with our training set, the two-out method 
exhibits slightly better performance than the pegasos right before the convergence occur (i.e. 
see fig.(7)). However, this is simply our hope and it need to be proven with bigger training 
set in the future. 
 

3.3 probability method 
As in case of the two-out method, the probability method exhibits almost identical result to 
pegasos (i.e. see fig.(8) and (9)). This also leaves us a hope that the probability method may 
3 works better than pegasos when the training set size is much bigger. 

Figure1. Comparison between pegasos and undo method Figure2. Comparison between pegasos and undo method 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure3. undo method is dominant in choosing search direction Figure4. undo method is dominant in choosing search direction 

Figure5. comparison between pegasos and two-out method Figure6. comparison between pegasos and two-out method 

Figure7. zoomed in comparison between pegasos and two-out method 



 
4 Conclusion 
 
Developing a new algorithm is a very hard job. After reading many papers and getting very 
deep insight about the algorithm, then finally someone can develop what is so called ’noble 
algorithm.’ Throughout the project, we have tried many other algorithms which have not 
been presented in this report. However the results were all pessimistic. Initially, for example, 
we tried to extract only support vectors from training set to increase the convergence rate. 
However, due to the presence of outliers, when we extract the support vectors (SVs), 
outliers were also extracted with SVs. This caused even worse test error than pegasos gave. 
In this report, we presented three different methods as a variant of Pegasos: undo method, 
two-out method and probability method. The undo method acted like steepest descent 
method. It may converge to a good solution, but in other times, it would not converge to a 
good solution. Both two-out method and probability method give a way of finding outliers in 
training set. Taking away data that gets two flags during the simulations, we may have high 
risk of giving away a good data. This result can be fixed either by increasing two to four or 
five. However to accomplish this, we need a bigger training set. The probability method also 
shows the potential to be used in bigger training set. 
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Figure8. comparison between pegasos and probability method Figure9. comparison between pegasos and probability method 


