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1.   INTRODUCTION 

There has been an explosion in the amount of available news and current event 
information on the Internet.  24-hours news outlets and independent bloggers alike flood the wires 
with a constant stream of data.  Though an increasing number of people rely on the Internet as 
their primary source of news and current events, it is becoming increasingly difficult for users to 
find what they are looking for.  Real Simple Syndication (RSS) provided a means to bring the 
data directly to the user through easily parsable XML feeds. Of course this only changed how 
users looked for news, not how much news there was. 

RSS aggregators, likes Google News, were created to learn a user’s preferences and only 
display RSS stories that a user would like.  Google News, in particular, has found a great deal of 
success applying algorithms from the text clustering community toward RSS data.  Users are able 
to choose a story and the search engine provides a list of related stories that the user (hopefully) 
finds interesting.   The potential applications of RSS clustering, however, go well beyond simple 
aggregation. 

In the future, Semantic-Web technologies may be able to actually extract knowledge from 
a stream of RSS feeds, i.e. find similarities, detect patterns, and infer things that the best human 
analysts cannot detect.  This type of application is well beyond the scope of this project.  Instead, 
we focus on aspect of such an application: sorting large amounts of RSS data.  We present here 
the results of applying standard clustering techniques to the RSS problem, and an analysis of how 
well these techniques work. 

In Section 2 we describe some of the unique features that separate RSS clustering from 
other text clustering applications.  The methods and results of our application are presented in 
Section 3, along with an extensive analysis of these results.  We finish with some suggestions to 
improve future applications. 
 
2.   PROBLEM SETTING 

As a subset of the larger text clustering problem, RSS clustering faces many of the same 
challenges.  The number of documents available to cluster and the high dimensionality of their 
representation make text clustering an unwieldy problem [Beil, Ester, Xu].  Feature Vectors with 
tens of millions of elements would not be uncommon in such situations.  The ambiguity of human 
language further complicates things.  It is frequently difficult to separate semantic similarity with 
syntactic similarity.  Any RSS clustering application would clearly have to address these 
problems, along with two further complications introduced by the nature of online news media: a 
rapidly expanding dataset and real-time search requests. 

Major news agencies are able to literally make up-to-the-minute updates to their RSS 
feeds.  Not only do we have to deal with an extremely large dataset, but also with a rapidly 
expanding dataset.  Any RSS application needs to be frequently updated to include newly posted 
stories.  In addition, most RSS clustering applications need to be able to handle real-time user 
search requests.  Having to run an hour-long clustering program will be inadequate in most cases. 

 
 
 



3.  METHODS 
3.1 Data Collection and Storage 

In order to make our experiment reflect real-world conditions, we decided to collect our 
data sample from real RSS feeds from a wide variety of sources.  Over the span of three weeks, 
we accumulated 1,091 RSS articles on topics including sports, politics, science, entertainment, 
business, and headline events (Appendix I).  For each article we stored the headline, the article 
summary, and the full text of the article in our database. 

We relied on the traditional bag-of-words approach to modeling our feature vectors.  We 
represent each article as a set of words contained in that article and the frequency that word 
appeared: 

 
The difference between any two documents can then be calculated as the ordinary Euclidean 
distance between those documents.  The feature matrix of all documents is then constructed with 
each row representing a document and each column the frequencies of word j.   

 
3.2 Preprocessing 
 As is typical in text clustering problem, we needed to perform a number of preprocessing 
steps on our feature vectors before we could begin.  At first this was limited to the removal of all 
symbols, HTML tags, numbers and unwanted characters.  Words like “don’t” simply became 
“dont" and hyphenated words were separated.   
 Initial clustering attempts turned out poorly, however, as common words (“the”, “I”, “he”, 
etc.) dominate the less frequently used, but more semantically important words.  Thus, we added a 
preprocessing step to remove these context free stopwords.  At the same time, an implementation 
of Porter’s Stemming Algorithm [4] was to reduce the remaining words to their basic stems.  This 
ensures words like “working” and “work” are clustered as the same word.  In the end, each 
document was represented as a 16,943-word vector. 
 
3.3 K-Means Algorithm 
 [5] showed that k-means clustering far outperforms hierarchical techniques in the realm of 
text processing.  While some improvements have been suggested to k-means, such as bisection k-
means [1], we decided to use the ordinary k-means on order to make use of efficient clustering 
software.  In order to try a variety of parameters, clustering was performed with cluster sizes of 
k=6 - 12, 25, 60 and 80, each time being run to convergence at least 20 times. 
 We tested three different distance measures for the clustering algorithm: ordinary 
Euclidean distance, Pearson Correlation, and Spearman’s Correlation.  Through experimentation 
we found that the Euclidean distance provided the most logical clusterings and was used for all 
our testing.  Although not tested here, [1] also suggests using the cosine angle to determine the 
difference between stories. 
 
3.4 Evaluating Accuracy  
 The difficulty in characterizing the accuracy of text clustering applications is that the idea 
of “right” and “wrong” is ambiguous.  Using a set of data that did not belong to some well-known 
database, like the Reuter’s Corpus, meant we had no standard with which our results could be 
compared.  In the face of this, we define the concept of cluster coherence to qualitatively speak 
about solution quality. 
 We define Term Coherence as a measure of how tightly a specific term (or group of 
terms) is clustered, regardless of context.  For example, with k=12, over 82% of the articles 



containing the name “Obama” appeared in one cluster.  We say that this cluster has high term 
coherence.  For news stories, this corresponds to how well a cluster represents a theme or genre. 
 Story Coherence refers to how well a cluster represents a specific story.  With k=60 we 
found that the name “Obama” was split into 9 of different clusters, but each cluster represented a 
different series of events.  One cluster, for example, contained 91% of the stories involving 
President Obama’s policy on Afghanistan, while another contained 90% of the stories about 
President Obama’s visit to Japan.  These clusters have high story coherence at the expense of term 
coherence. 
 We represent this visually in Figures 1a and 1b.  Each color represents the number of 
times “Obama” appeared in a cluster.  We see that for k=12 that the vast majority of occurrences 
appeared in a single cluster, representing a high term coherence.  Likewise, for k=60, we see a 
larger number of clusters, but looking at the headlines of each would reveal each cluster to be 
more topically correlated.  
 In order to get a more quantitative view of accuracy we will use two more measures.  The 
first is ratio of the maximum cluster size to the mean cluster size.  Solutions which are able to 
distribute data into a number of medium sized clusters is more desirable than one which creates 
many tiny clusters and a few extremely large clusters.  The second is the norm of the Mean-
Squared Error for any story in a cluster.  The further away a story is from the “average story” the 
less likely it is to fit in that cluster. 
 

  
Figure 1a and 1b:  A smaller number of clusters results in higher term coherence, while larger 

numbers of clusters yields higher story coherence. 
 
4. RESULTS 
 After running the k-means algorithm at a variety of clusters sizes we found that k=12 and 
k=60 generated the results with highest coherence.  From the 12 clusters we identified ten as 
belonging to one of the categories: politics, crime, sports/games, and entertainment.  Of those, we 
noticed that three clusters corresponded strongly to a specific story.  One cluster had 80% of the 
stories about the Fort Hood shooting, another had 100% of the stories about Hurricane Ida, and 
the third had 85% of the stories about the musician Rihanna and her domestic abuse case.  That is 
to say, 12 clusters give us a solution with high term coherence, but low story coherence.  When 
we increase the number of clusters to 60, we get a very different result.  We found 28 of the 60 
clusters to have discernable categories, with 25 of those representing specific stories.  In other 
words, 60 clusters yield a solution with high story coherence, but lower term coherence. 
 From this we can say that the number of clusters roughly corresponds to the “resolution” 
of our solution.  Fewer clusters represent higher-level groupings with high term coherence, while 
more clusters result in a more story-centric view of events.  This fact could be leveraged in future 
applications by first breaking the problem into larger themes and then breaking each theme into 
individual stories, through reapplication of the clustering process.  An interesting result was also 
noticed in our above results.  Stories which had highly repeated, very unique terms, like 
“Hurricane Ida” could be correctly clustered even with small numbers of clusters.  So it may not 
always be necessary to cluster with large k to get results about a specific story. 



 Unfortunately, both cases above suffer huge polydispersity in the cluster size.  In fact, for 
k=60 the largest cluster is 440 elements.  That is 24 times the average cluster size!  The reason for 
this is simple to understand.  Most stories will fall within some average range of our vector space.  
Features vectors that lie far outside the average are easier to separate than those within.  Thus, as 
k-means runs, each cluster centroid is pulled toward a group of stories on the extremities.  All the 
remaining stories in the center end up grouped into one large cluster. 
 The obvious next step was to improve our results by normalizing all our vector data, and 
thus reducing the effect of magnitude on our clusters.  Again, we ran k-means with k=12 and 
k=60, this time on our new normalized data.  Immediately we saw that cluster sizes were more 
consistent.  In fact, the largest cluster size for k = 60 was only 3.68!  We found only 20 of the 60 
clusters had discernable themes, a decrease of 13.3%.  What is interesting, however, is that the 
clusters without strong correlations still were better, on average, than those in the non-normalized 
set.  What we saw is that clusters contain two or three different unrelated stories, but each story 
was very strongly grouped. 
 In general, errors in clustering solutions can be fixed if they can be detected.  For the 
relatively small amount of data we used this could be performed by hand, but for any realistic 
problem this needs to be done automatically.  Calculating the Mean-Squared Error for each story 
proved to be a good way to detect how poorly a story fit in a cluster.   If a story had an MSE 
significantly greater than the others in the cluster, we found with good probability that this story 
did not belong in the cluster.  Iteratively removing the stories with high MSE’s provides a simple 
method for finding cluster quality. 
 
5. CONCLUSIONS 

There are a number of promising avenues that should improve results significantly.  
Particularly research focusing on comparing semantic meaning, instead of just word frequencies 
has given good results.  [3] has used the WordNet Ontology to find synonym and hyponym 
relationships between documents.  Applied to RSS clustering, however, this may not provide the 
most significant difference.  We found that most articles prefer using the same common words, 
instead of using synonyms.  What may prove more useful is the work by [2] into leveraging the 
taxonomic structure of Wikipedia.  Wikipedia has the advantage of being frequently update with 
current events and people, which are likely to show up in RSS feeds and links between articles 
typically denote logical links between elements.  Thus, articles about “pork barrel spending” 
could be related to government finance and the 2008 US elections, instead of with stories on the 
meat industry. 
  One problem that still needs to be addressed is what t do when new articles are added.  
Our tests with only 1,100 articles took up to an hour an a half for large values of k.  Being useful 
in an internet setting would require near real-time results, which cannot be achieved by re-
clustering every time a new article in introduced.  Instead, we could cluster a large set of data 
once and then calculate the probability a new story fits into each of the clusters.  If we treat our 
cluster assignments as “correct labels” for a training set, this could be done with any supervised 
learning technique. 
 We have seen that even using the most basic techniques good reasonably good results 
could be achieved.  Defining a set of quantitative and qualitative measures to speak about 
accuracy allowed us to find a number of places where improvements could be easily made.  As 
work proceeds in the field of text clustering we can expect even greater improvements in both 
accuracy and speed. 
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APPENDIX I: RSS SOURCES 
MTV Entertainment and Music News (http://www.mtv.com/rss/news/news_full.html) 
Reuters Political News (http://feeds.reuters.com/reuters/politicalNews) 
Reuters Science News (http://feeds.reuters.com/reuters/scienceNews) 
Reuters Technology News (http://feeds.reuters.com/reuters/technologyNews) 
BBC Business News (http://newsrss.bbc.co.uk/rss/newsonline_world_edition/business/rss.xml) 
ESPN Sports News (http://sports.espn.go.com/espn/rss/news) 
CNN Top Stories (http://rss.cnn.com/rss/cnn_topstories.rss) 
CNN Entertainment News (http://rss.cnn.com/rss/cnn_showbiz.rss) 
BBC Headline News (http://newsrss.bbc.co.uk/rss/newsonline_world_edition/front_page/rss.xml) 
 
 
 


