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In this study of children with idiopathic autism, 

multivariate unsupervised and supervised learning of 

structural magnetic resonance images (MRI) revealed a 

novel subtype of autism that was characterized by 

meaningful grey matter anomalies and was predictive of 

behavioral outcome. Given that previous studies have 

failed to identify neurobiological subtypes of autism that 

are clinically meaningful, these findings underscore (a) 

the importance of utilizing machine learning algorithms 

to explore neurobiological motifs, and (b) the potential 

utility of brain-based machine learning in clinical 

practice.  

 

I. INTRODUCTION 
 

AUTISM is currently the fastest growing developmental 

disability [1]. However, despite the increasing prevalence 

of autism, little is known about its causes or cures and 

exploration into developmental prognosis has been stunted 

by the low predictive validity of behavioral measures [2]. 

Leshner et al, argue that this contemporary lack of 

understanding stems from the inability to identify 

biologically significant sub populations [3]. Using 

Leshner’s analysis as inspiration the goal of this paper is to 

apply machine learning towards unraveling new 

neurological based subtypes.  

In this analysis we cluster segmented grey matter from 

MRI scans of 113 boys ( age = 2.77 years, 
2
 = 0.63); 63 

diagnosed with Autism, 31 typically developing (TD) 

controls and 19 controls with idiopathic developmental 

delay (DD), and examine if these clusters are clinically 

meaningful. Our approach to this problem forms a natural 

application for machine learning and can be viewed as an 

instance of unsupervised learning on high-dimensional, 

noisy data. The measure of success that we use is: clusters 

that define a subtype of Autism must (1) be robust and 

quantitatively distinct, (2) have significant correlation with 

measurable behaviors and (3) reflect plausible 

neurobiological patterns which are associated with the 

observed behaviors. 

Previous biologically based analysis of autism has 

attempted to categorize the disorder through univariate or 

coarse multivariate brain regions and until now has been 

unable to determine explicit subtypes. The seminal paper in 

this area by Hrdlicka et al amalgamated the fine grey 

matter MRI information into seven coarse brain 

measurements based on strong a priori assumptions [4]. 

Though their results were instrumental in demonstrating 

the potential for analyzing structural MRI, they were 

unable to deduce meaningful patterns.  Implementing their 

methodology on our data set demonstrates subtypes that are 

not distinct by general measures and hold no behavioral 

correlations. Given autism has an intricate neural 

foundation, we hypothesize that; a coarse feature reduction 

could hide information critical for understanding patterns 

in autistic brains. Based on this hypothesis we perform a 

novel application of unsupervised learning methodology 

directly onto carefully preprocessed high dimensional fine 

grey matter volume autistic MRI scans.  

This unique application produces results that 

significantly improve on the industry standard of 

behavioral prognosis and reveals clusters that meet the 

initial subtype criteria.  

 

II. PRE-PROCESSING 
 

We are provided grey matter data derived from MRI 

Scans that were mapped into a standard 4mm voxel brain 

space using modulated Spatial Normalization. Additional 

preprocessing is performed as follows: 

Initially, we adjust our data for age, scan site and total 

grey matter volume. Values are adjusted by performing 

linear multiple regression with age, scan site and total GM 

volume as independent variables and subtracting the 

calculated residuals from the MRI data.  

Then, due to the sparse high dimensional nature of our 

data we choose to reduce the number of voxels considered. 

We try to eliminate voxels based on (a) recursive feature 

elimination using weights from a linear Support Vector 

Machine (SVM) that separates autistic subjects from 

controls, (b) regression between each voxel and temporal 

change in behavior characteristics and (c) an upper bound 

selection of brains areas found to be important for autism 

based on research by Amaral et al [5].  Of the feature 

reduction methods considered, the Amaral based reduction 

produces the best performance improvement. 

Overall these preprocessing steps result in a higher 

degree of uniformity across all subjects and reduce the 

level of noise in the data.  This preprocessing yields 163% 

improvement in cluster strength (measured as CCC, refer 

to section III). 

 

III. UNSUPERVISED CLUSTERING 
 

One of the most crucial steps in this analysis is to 

identify robust, quantitatively distinct clusters within the 

set of autistic patients. To obtain these clusters we apply 

three separate unsupervised techniques commonly used in 

the field of structural MRI analysis: Hierarchical 

Agglomerative Clustering (HAC), Spectral Clustering (SC) 

and General Mixture Models (GMM).  

 



1. HAC Clustering 

Recently, Stedman et al demonstrated the use of HAC 

on grey matter MRI data in order to uncover nuanced 

neural patterns [6]. Given this precedent, we apply HAC to 

our dataset. To agglomerate clusters, we use a Ward linkage 

criterion that minimizes the error of sum squares with the 

Euclidean Squared Distance dissimilarity metric. In 

contemporary structural MRI and brain psychology 

literature, Euclidean distance has been demonstrated to be 

an accurate dissimilarity metric [7] and Ward linkage is an 

efficient way to obtain clusters with minimized variance.  

This method provides two distinct clusters: a larger 

cluster of 46 autistic children, which we refer to as the 

Alpha Cluster, and a smaller cluster of 17 autistic children, 

which we refer to as the Beta Cluster. To objectively 

determine the correctness of HAC we apply the HAC 

specific Cophenetic Correlation Coefficient (CCC) test 

scaled from 0 to 1 where 1 represents the ideal CCC and 

0.5 is the threshold for considering a cluster to be 

significant [8]. The clusters obtain a CCC value of 0.8144, 

which is strong evidence that HAC has identified two 

natural clusters.  

To visually demonstrate these results we project clusters 

Alpha and Beta onto the primary principle components 

(PC) (see Figure 1). While only 14% of the entire brain 

matrix can be represented on three PCs, the first three PCs 

reflect 93% of the variance between the clusters.  

 

Figure 1: Alpha (red) and Beta (blue) Clusters 

 

2. Spectral Clustering 

As demonstrated by Wassermann et al [9], SC is well-

suited choice for sparse data such as MRI scans. The SC 

algorithm uses the spectrum of the data point similarity 

matrix to retain select features that cause maximum intra-

cluster similarity and minimum inter-cluster similarity. 

Though this method produces slightly different cluster 

labels, the results are 95% similar to those obtained using 

HAC.  

 

3. General Mixture Models 

Another clustering method commonly used in the 

domain of MRI scans is GMM. This method uncovers two 

independent component distributions with high peaks, 

which implies there are two tight clusters. The labels 

obtained through GMM are identical to those obtained 

from SC and are highly similar to those found using HAC.  

These three independent clustering methods obtain 

highly similar clusters. This supports the hypothesis that 

the dataset of autistic children has two natural clusters and 

that the Alpha and Beta clusters are legitimate.  

 

General Clustering Validation 

Even though the clusters appear to be highly distinct, to 

consider them to be formal subtypes we must show that: 

(1) these clusters are numerically separate when measured 

using general cluster tests and (2) they give the same 

results when the input is perturbed by an appropriate 

amount of noise. To test these criteria we use 

Homogeneity-Separation (HS), Silhouette, and Weighted 

Average Discrepant Pairs (WADP) general cluster 

validation measures. HS measures the ratio of homogeneity 

to separation where separation is the average Euclidean 

distance between clusters weighted by cluster size. 

Silhouette measures the ratio of homogeneity to separation 

where separation for sample i is the max Euclidean 

distance from i to another sample j normalized to the range 

-1 to 1. WADP measures how many cluster labels change 

when each matrix feature is perturbed by normally 

distributed noise with mean 0 and variance equal to the 

log-ratio of that feature across all samples [10]. We repeat 

each of the tests for different number of clusters (k) to 

confirm that the analysis should be performed on two 

clusters. HS and Silhouette are maximized and WADP 

discrepancy is minimized at k = 2. 
 

Clustering HS Ratio Silhouette WADP 

HAC 2.14 0.429 0.087 

GMM / Spec 1.40 0.316 0.293 

Figure 2: General Validation Measures 

We observe that HAC clustering outperforms both 

GMM and SC. Thus we continue subtype analysis using 

the Alpha and Beta clusters. Moreover, HAC performed 

well on all three validation tests. The high HS Ratio and 

Silhouette scores quantitatively demonstrate that the 

variance between the Alpha and Beta clusters is more 

significant than the variance within each cluster. The 

WADP test shows that the clusters give the same results 

even with additional noise. 

Finally, to confirm the validity of the entire process we 
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apply the same pre-process and clustering methodology to 

a combined set of control and autistic MRI scans. This 

approach yields three clusters (CCC of 0.8125); a Control 

Cluster, the Alpha Cluster and the Beta Cluster. Since the 

preprocessing steps used in this paper and the Euclidean 

HAC clustering algorithm successfully separate the control 

brains from autistic brains we conclude that our procedure 

is applicable to the domain of autistic MRI scans. 

 

IV. BEHAVIOR CHARACTERIZATION OF CLUSTERS 
 

Our next step is to determine whether there are 

meaningful trends between the Alpha and Beta clusters and 

the behaviors of the corresponding autistic children. For 

each child, behavioral data was measured using a set of 

quantifiable tests, which are typically used to diagnose or 

characterize autism. These tests were performed once at the 

time when the structural MRI scans were taken (Time 

Initial tests denoted T0) and again after two to three years. 

Our longitudinal tests are performed on the variability 

measured as change in score per year (Slope tests denoted 

∆) to account for inconsistency in how much time elapsed 

between the two tests for each patient. In order to explore 

possible trends, we apply univariate, linear multivariate 

and kernalized multivariate analysis between the Alpha-

Beta group labels and the T0 and ∆ tests. 

 

Univariate Analysis 

First we run Welsh’s Null Hypothesis univariate tests 

(WNH), a version of the standard T-Test that accounts for 

different sample sizes, on the behavior characteristics of 

the Alpha and Beta subgroups. For each set of scores for a 

behavior, b such that 



bUT0  we split the scores by 

their Alpha and Beta labels. We then run NHT to test the 

hypothesis that the two sets of scores are samples from the 

same Gaussian distribution against the hypothesis that they 

are samples from separate Gaussians. The general 

threshold for discarding the null hypothesis is a p value of 

0.05.  

Of the behavioral tests, the ADI Repetitive and 

Stereotyped Behavior (ADI_RS) test and the ADOS 

Stereotyped (ADOS_S) test, two distinct measures of a 

child’s repetitive physical behavior of Autism, such as hand 

flapping and body rocking (referred to by Amaral et al as 

Repetitive Behaviors), pass the NHT with significance 

measures of p = 0.0030 and p = 0.034 respectively. 

However to take into account the probability of false 

positives given multiple tests, we apply the Bonferroni 

Correction [11], resulting in a stringent p threshold of 

0.0033. Since the significance level of ADI_RS test is 

below the Bonferroni threshold, it is exceedingly likely that 

the ADI_RS distinction (Figure 3) is a strong Alpha Beta 

correlation. Another interesting observation is that in both 

the ADI_RS and ADOS_S slope behavior tests, the autistic 

children in the Beta cluster had positive mean values 

(ADI_RS  = 0.51) while the autistic children in the Alpha 

cluster had negative mean values (ADI_RS  = -0.89). This 

suggests that the Repetitive symptoms of Alpha group 

improved over time whereas the repetitive symptoms of the 

Beta group worsened.  

 

Figure 3: ADI_RS test showing the Alpha distribution (red) and 

Beta distribution (blue) 

This is a highly noteworthy result as it shows that the 

two natural clusters uncovered have a strong univariate 

longitudinal behavioral trend.  

 

Multivariate Analysis 

In order to determine how well our labels could predict 

a collection of behaviors, we perform multivariate analysis 

between the discovered groups and the recorded behavior 

scores. This experiment was implemented using a SVM 

classifier with a linear kernel between the Alpha Beta 

cluster labels and both the T0 and ∆ behaviors. To measure 

how well the SVM could separate behavior trends with 

respect to each cluster, we use leave-one-out cross 

validation (LOOCV) to calculate accuracy (ACC), 

sensitivity (SEN), specificity (SPE), positive predictive 

value (PPV) and negative predictive value (NPV). 

To understand how our results compare to chance we 

apply a Permutation Analysis (PA) algorithm that 

calculates the mean (µ) and standard deviation () of each 

metric (under the assumption that the metrics are 

distributed normally) and use the resulting distribution to 

homogenize our results. In order to evaluate 
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Metric Slope Time Initial 

ACC 92.5 83.5 

SEN 64.3 74.4 

SPE 96.6 84.1 

PPV 83.4 80.2 

NPV 80.8 77.8 

Figure 4: Behavior SVM Metric Percentiles 

Using the SVM with clusters Alpha and Beta we obtain 

the above LOOCV results (Figure 4). 

Since all the LOOCV metrics are substantially above 

chance (50
th
 percentile) these results imply that there is a 

robust behavioral distinction (both in T0 and ∆) between 

the Alpha and Beta subgroups and demonstrates that the 

two clusters have behavioral manifestations. Moreover, 

though the Alpha and Beta clusters perform well at 

separating T0, the clusters are substantially better at 

distinguishing ∆ measures; meaning that the Alpha Beta 

distinction is more precise at predicting future behavior.  

Because the behavior matrices are normalized, the 

weights used by the SVM represent how important each of 

the behavior tests are in separating the Alpha and Beta 

clusters. 
 

Behavior Test Slope Weights 

ADI Repetitive and Stereotyped 1.315 

ADOS Stereotyped 0.806 
 

Behavior Test Time Initial 

ADI Repetitive and Stereotyped 1.313 

Vineland Communication -0.963 

Figure 5: Behavior SVM Weights for Slope and Time Initial 

The behavior-test weights in Figure 5 are important for 

three reasons (1) The most substantial differences in the 

weights, especially for ∆, are from tests which measured 

Repetitive and Stereotyped behaviors (2) The parities for 

the Repetitive behavior tests are internally consistent in 

denoting that autistic children in the Beta group have more 

severe symptoms and (3) as expected, the weighted 

features agree with the univariate analysis. Overall, this 

demonstrates a meaningful pattern in behaviors and as a 

result provides powerful evidence for the hypothesis that 

the Alpha and Beta clusters represent different subgroups 

of Autism. 

 

Kernalized Multivariate Analysis 

To account for potential non-linear relationships 

between behavior and the Alpha and Beta clusters, we 

perform multivariate analysis using different kernels. As  

Figure 6 demonstrates, the linear kernel out-performs other 

kernels.  

Since the non-linear kernels have high LOOCV testing 

error with relatively low training error, it seems that the 

non-linear kernels over-fit the data. This conclusion is 

reasonable, considering the small training set size relative 

to number of features used to train the SVM.   
 

Metric Linear Quadratic Radial Basis Polynomial 

ACC 92.5 48.8 61.8 62.3 

SEN 64.3 36.7 39.7 93.9 

SPE 96.6 57.0 68.0 41.1 

PPV 83.4 38.7 50.0 72.8 

NPV 80.8 43.1 51.4 78.6 

Figure 6: Kernalized SVM Metrics 

V. BRAIN ANALYSIS 

 
The final step in our subtype analysis is to examine the 

structural MRI differences between the Alpha and Beta 

clusters. In order to quantify the grey matter differences we 

use three different methods: (1) We calculate the centroids 

of the two clusters and find the difference vector between 

them, (2) We use the primal Eigen-brain, since 92% of the 

variance between the two clusters is expressed by the first 

principle component, and (3) We train a SVM to label 

brains as either Alpha or Beta and extract the weights used 

by this SVM. For each of the vectors obtained we 

reconstruct average grey matter brain images by reversing 

the normalization stages of our preprocessing pipeline. 

The brains representative of the difference between the 

Alpha and Beta clusters (figure 7) show several important 

patterns. The most prominent and consistent difference that 

emerges from these brains is the grey matter difference in 

the Thalamus region (the lower lobes of the Diencephalon, 

in the center of the brain). Across all three methods of 

viewing the differences between clusters, the Beta cluster 

has significantly less grey matter in the core of the 

Thalamus. Furthermore, in both the centroid and PC brains 

the Alpha and Beta clusters are distinguished by amount of 

grey matter in the Orbitofrontal Cortex (The large red 

activation above the nose) and the Medial Prefrontal 

Cortex (The thin red strip in front of the Thalamus). 

Moreover, the Alpha and Beta clusters also show 

substantial grey matter volume differences in the posterior 

Vermis of the Cerebellum (the lower region of the 

Cerebellum) and in the Caudate region.  

According to Amaral, two of the four most important 

regions of the brain for determining Repetitive and 

Stereotypical Behavior characteristics of autism are the 

thalamus and the frontal cortex [5]. Moreover, other 

research has hypothesized that Repetitive Behaviors can 

also be attributed to the Vermis and the Caudate [12]. 

Finally the Alpha and Beta clusters also demonstrate 

differences in the hippocampus (small blue region  behind  



 

 

Figure 7: Grey Matter differences measured by centroid difference (top), PCA (middle) and SVM weights (bottom) 

the Orbitofrontal cortex). Though this region has not been 

noted as deterministic for Repetitive behaviors it is 

considered to be highly significant for Autism in general. 

Thus, the regions of the brain with the largest observed 

differences between the Alpha and Beta group correspond 

to regions that are thought to cause the behaviors these 

clusters predicted. This provides strong reinforcement 

towards the hypothesis that the Alpha and Beta clusters 

represent meaningful subtypes of Autism.  Furthermore, 

while different regions have been hypothesized 

individually to cause repetitive behaviors the differences 

between the Alpha and Beta clusters could lead to further 

insight on how their combinations affect Repetitive 

Behaviors in autistic children.  

 

VI. CONCLUSION 

 

In the hopes of facilitating future diagnosis our project 

culminated in the development of an autism sub-type 

classification tool. The classification tool uses SVM to 

identify whether a patient suffers from Beta autism or not 

and can make inferences regarding future undesirable 

behavioral characteristics that the child may suffer from, 

based on this classification.   

Overall this project provides strong evidence that the 

Beta cluster is a valid subtype of autism that is 

characterized by repetitive behaviors. Given the possible 

applications of discovering a new autism subtype, this 

finding suggests that more exploration should be done to 

cement understanding of Beta Cluster autism. 
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