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1. Introduction 

Complex genetic diseases are a major cause of 
human morbidity and mortality, and their preva-
lence and severity place a tremendous burden on 
patients and medical facilities [1,2].  Preventive 
care studies have shown that identification of pa-
tients at risk for disease and prediction of patient 
age at disease onset improve patient outcome and 
reduce health care costs [2].  However, the devel-
opment of accurate predictive methods remains in 
preliminary stages. 
    Recent research suggests that methods for ana-

lyzing combinatorial interactions of single nucleo-
tide polymorphisms (SNPs) can lead to effective 
predictors for disease [3].  SNPs, which are single 
allele mutations in the genomic sequence of an or-
ganism, are responsible for about 90% of all human 
DNA variation and play an important role in hu-
man evolution, drug sensitivity, and disease sus-
ceptibility [4].  Due to advances in high-throughput 
experimental techniques for SNP identification and 
the resulting data explosion, several machine learn-
ing methods have been applied to study the rela-
tionship between SNPs and disease [3,5]. Algo-
rithms such as MegaSNPHunter achieve good per-
formance by avoiding the computationally intrac-
table combinatorial search space, but they are lim-
ited by the inability to use a large number of SNPs 
in disparate genomic locations [3].  Other machine  

 
 
learning approaches have been successfully applied 
to disease risk prediction using SNP data [5], but 
these methods have not yet been applied to onset 
prediction. 
    Therefore, we will leverage a multiple-SNP ap-

proach to create a novel predictive model of both 
disease risk and age of disease onset.  Our project 
aims to improve performance of disease risk and 
age of onset assessment, and to bring us closer to 
personalized preventative treatment for complex 
diseases.  
  

2. Methods 
 

2.1 Dataset 
     We have obtained SNP data from genome-

wide association studies (GWAS) performed by the 
Wellcome Trust Case Control Consortium 
(WTCCC).  This dataset is comprised of the SNP 
genotypes for 3,000 healthy controls and 14,000 
diseased patients, all genotyped at 500,568 ge-
nomic locations [1].  The patient populations are 
equally sized for seven complex genetic diseases 
(Table 1).  Age of disease onset is available for 
three of the diseases and is binned by decade.  
There is sufficient spread in age of onset to enable 
subpopulation studies. 

  
Table 1. WTCCC Study participant characteristics. 

 
# Patients Cohort Age of Onset 

  0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 Unknown 
1,998 Bipolar Disorder (BD) - - - - - - - - - 

1,991 Coronary Artery Disease 
(CAD) 0% 0% 1% 12% 39% 40% 8% 0% 0% 

2,001 Hypertension (HT) - - - - - - - - - 
2,009 Crohn’s Disease (CD) 2% 21% 36% 16% 9% 6% 3% 1% 7% 
1,999 Rheumatoid Arthritis (RA) - - - - - - - - - 
2,000 Type 1 Diabetes (T1D) - - - - - - - - - 
1,999 Type 2 Diabetes (T2D) 0% 0% 2% 15% 32% 38% 13% 0% 0% 
3,004 Controls - - - - - - - - - 



2.2 Data filtering 
    We have removed patient data and SNP data from 
our set for the following reasons: 1) patients missing 
more than 3% of SNP data, 2) genotype calls that 
disagree between the two calling algorithms used by 
the WTCCC, and 3) satisfying other exclusion crite-
ria specified by the WTCCC (poor data quality, in-
correct genotyping, etc). 
  
2.3 Classification 

We used the LIBSVM software package [6] to 
build support vector machine classifiers.  All binary 
classifiers and multi-class classifiers were built us-
ing C-support vector classification, which solves the 
primal problem (1) with C set to 2. We used a radial 
basis kernel function (2) with gamma set to 2-15.  Pa-
rameter values were optimized for a single binary 
classifier using a grid search over a range of values. 
Due to the computational complexity of this optimi-
zation problem, these parameters were not re-
optimized for each classifier.  
 
(1)  
 
 
 
 
 
(2)  
 
 
2.3.1  Disease risk: 
    For each disease, we trained a binary classifier to 
distinguish between disease and control.  To balance 
training set sizes for disease samples and control 
samples, we selected a random sample of pa-
tients from the larger group.  In each case, the total 
training set size averaged around 3600 individuals 
(half disease, half control). 
 
2.3.2  Early onset risk: 
    For the three diseases with onset data (CAD, CD, 
and T2D), we trained a binary classifier to identify 
patients at risk for early onset.  We partitioned the 
dataset into early onset and late onset groups to train 
the classifier.  To balance training set sizes for early 
and late onset groups, we used multiple iterations of 
bootstrapping and ensured performance was not 
based on the selected individuals. 
 
2.4 Feature Representation 
    For each SNP, major and minor alleles were de-
fined based on allele frequencies in the control popu- 

 
lation (where the major allele is the more frequently 
observed allele).  These annotations provided a con-
sistent allele nomenclature for representing all pa-
tient SNP vectors.  Representation of each SNP re-
quired two values, the first of which indicated the 
presence/absence of genotype information and the 
second of which encoded the genotype.  Pres-
ence and absence corresponded to values of 100 and 
0 respectively.  These values provided a means of 
accounting for missing data without disrupting our 
genotype representations.  Genotype information 
(minor/minor, minor/major, major/major) corre-
sponded to values of 100, 50, and 0 respectively.  
This labeling scheme makes the assumption that the 
phenotypic effect of a SNP is linearly dependent 
upon the major (or minor) allele. 
 
2.5 Feature Selection 
    Our feature space of 500,568 SNPs far exceeds 
the number of individuals available for training our 
machine learning algorithms.  We therefore reduced 
our feature dimensionality by filtering SNPs based 
on strength of disease association and on chromo-
somal proximity, which prevents overrepresentation 
of genomic loci.  We measured disease association 
for each SNP by calculating a chi-square p-value for 
the difference between the SNP genotype distribu-
tions of diseased patients versus that of control indi-
viduals.  These measures of significance allowed us 
to rank SNPs for feature selection for both disease 
risk prediction and early onset risk prediction for in-
dividual diseases.  To filter by chromosomal prox-
imity, we first clustered our set of top ranked SNPs 
by single linkage clustering using HapMap linkage 
disequilibrium r2 values as our pair-wise dis-
tances [7].  We then selected the SNPs with the most 
significant p-value within a given cluster and filtered 
out all other SNPs. 
  
 2.5.1  Disease risk using binary classifiers 
    As described above, SNPs were ranked by chi-
square p-value for each disease, where SNPs with 
the lowest p-value received the highest ranking.  The 
number of top ranked SNPs selected from each dis-
ease was optimized by empirical testing using multi-
ple iterations of SVM training.  The top 30 SNPs 
from T1D and the top 75 SNPs from all other dis-
eases were selected as our final feature vectors by 
the disease association ranking step.  75 SNPs gave 
the best performance for all diseases except T1D, in 
which case more than 30 SNPs did not improve the 
performance. 



2.5.2  Early onset risk using binary classifiers 
    SNPs were ranked by chi-square p-value, 
where p-values were calculated based on the SNP 
genotype distributions for 'early-onset' versus 'late-
onset' groups.  The top 30 SNPs were selected as our 
preliminary feature vector.  The number 30 was cho-
sen to prevent overfitting, as the smallest training set 
had around 300 patients. The linkage disequilibrium 
filtering step was then applied to the preliminary 
vectors to obtain final feature vectors. 
  
2.6 Validation 
    We performed 20-fold cross validation on the dis-
ease risk and age of onset classifiers discussed 
above.  We calculated performance metrics includ-
ing prediction accuracy, false positive rate, ROC 
curves, and AUC (area under ROC curve) to as-
sess classifier performance.  We also performed 
classification with 20 random sets of 24 SNPs (per-
mutation testing) and compared the performance of 
our feature sets with the random sets.  This process 
allowed us to determine the baseline performance 
for our learning method and whether our selected 
features outperformed this baseline significantly. 
    To evaluate the biological significance of our SNP 
profiles for disease risk and age of onset prediction, 
we built a pipeline to identify genes, pathways, and 
other biological features associated with our SNP 
feature vectors (Figure 1).  We used Ensembl Bio-
mart [12] to generate the list of Ensemble Gene IDs 
associated with a given SNP vector and then used 
the Clone/Gene ID Converter [13] to determine the 
Kegg pathways in which these genes are involved 
[14].  Finally, we manually examined the retrieved 
Kegg pathways to look for biological relevance with 
respect to the original classification problem. 

 
Figure 1. Pipeline for biological validation of SNP sub-
sets 
  
3. Results and discussion 
 
3.1 Disease risk 

    The ROC curves for the seven binary disease pre-
dictors are shown in Figure 2.  The classifier for 
Type 1 diabetes has the best performance, while the 
other classifiers have only moderate performance.   
These results are likely due to the fact that several 
genomic regions contribute strongly towards the 
T1D phenotype.  This conjecture is supported by the 
fact that T1D had a few SNPs with very significant 
p-values (on the order of 1E-200) while the other 
diseases had less significant SNP p-values.  The 
quality of the T1D result, which matches or exceeds 
the predictive accuracy achieved by prior methods 
[8], justifies our approach of ranking SNPs by p-
value in order to capture the most discriminating fea-
tures.  The performance of the other disease classifi-
ers suggests that the 500K genotyped SNPs does not 
include those that co-segregate with highly influen-
tial genetic loci.  
 

 
Figure 2. ROC curves for binary SVM classifiers for dis-
ease risk 
 
3.2 Early onset risk 
   Using values from recent literature, which linked 
SNPs and clinical findings to disease onset groups 
[9-11], we derived medically relevant cutoff ages to 
partition the dataset into early onset and late onset 
groups (Figure 3).  We tested variations in our train-
ing data where we shifted the cutoff by one decade 
and where we removed training data for patients 
within one decade of the cutoff.  The reasoning be-
hind this second method is that onset-differentiating 
SNPs may present a stronger signal between the ex-
tremes of the onset populations.  Furthermore, be-
cause literature definitions for early onset versus late 
onset were imprecise, removing the patients in the 
age categories adjacent to our cutoffs produced a 



training set with higher quality class labels.  For all 
partitioned datasets, we performed permutation test-
ing and found the random sets of SNPs to achieve a 
mean AUC no greater than 0.49 with standard devia-
tion 0.05.  For each disease, we then selected the 

best performing onset classifier from the above 
variations (highlighted in Figure 4).  The large AUC 
values for these classifiers indicate that the selected 
SNP subsets have strong predictive power for early 
versus late onset. 

 
 

Figure 3. Early and late onset categorization from literature 
 

(A) 
Disease CAD 
Partition Cutoff 4 Cutoff 5 Exclude 4 Exclude 5 Exclude 4,5 
nearly onset 239 1005 239 1005 239 
nlate onset 1690 924 924 161 161 

µAUC ± σAUC 0.69 ± 0.02 0.69 ± 0.00 0.73 ± 0.01 0.74 ± 0.03 0.82 ± 0.01 

Disease CD 
Partition Cutoff 2 Cutoff 3 Exclude 2 Exclude 3 Exclude 2,3 
nearly onset 407 1038 407 1038 407 
nlate onset 1226 595 595 329 329 

µAUC ± σAUC 0.69 ± 0.02 0.66 ± 0.01 0.73 ± 0.01 0.73 ± 0.02 0.77 ± 0.01 

Disease T2D 
Partition Cutoff 4 Cutoff 5 Exclude 4 Exclude 5 Exclude 4,5 
nearly onset 328 944 328 944 328 
nlate onset 1595 979 979 253 253 

µAUC ± σAUC 0.70 ± 0.02 0.66 ± 0.00 0.72 ± 0.02 0.75 ± 0.01 0.77 ± 0.02 
 
(B)  

 
 

Figure 4. (A) AUC table for all onset cutoff/leave-out variations (B) ROC curves for the best-performing binary SVM 
classifiers for early onset risk (shaded regions indicate one standard deviation from the mean.



3.3 Biological validation 
For each disease classifier, our biological feature 
pipeline described in 2.6 yielded biological path-
ways involved in that disease's mechanism, and for 
each onset classifier, the pipeline yielded pathways 

implicated in aging and diet.  These pathway asso-
ciations present strong evidence that our SNP vec-
tors have biological relevance and are not artifacts of 
the learning process (Table 2). 
 

 
Table 2. Pathways associated with SNP features for disease classification 

 

 
Conclusion 
 

We have developed a diagnostic tool to predict 
both disease risk and risk of early disease onset 
given an individual’s genetic information.  Our re-
sults indicate a low dimensional patient SNP profile 
can be used for effective risk assessment for type 1 
diabetes, and that the WTCCC patient data set con-
tains sufficient information for the construction of 
disease onset classifiers.  Further work on onset 
classification promises to yield effective early onset 
prediction and preventative methods both for clinical 
use and for the rapidly expanding field of personal-
ized medicine. 
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