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Abstract 

The overarching theme of this project is to 

explore ways for a single user to control 

multiple robots using a multi-touch interface.  

In particular, how does increasing the number 

of robots change both the interaction methods 

and the control methods?  This project aims to 

the answer the question of “What types of 

problems occur when controlling real robots, 

and how do you solve them?”   

1 Introduction 

Much like cell phones have become an everyday 

item in the last decade, robots are increasingly 

coming into mainstream use.  Despite there being 

no standard interface for controlling a single robot, 

we are exploring the idea of how a single person 

can control multiple robots.   

Imagine driving a car – your hands on the wheel.  

Now imagine driving two cars at the same time, 

with two steering wheels, two gas pedals, and two 

brakes.  This is a difficult task.   Much like driving 

two cars at the same time is tough; trying to drive 

two robots would be just as hard.  Now what 

happens if you have three, four, or ten robots?  It 

gets even worse if you consider that the robots 

may each have their own arms, too.   

To remedy this single-operator-multiple-robots 

control problem, we must give the robots some 

level of autonomy.  Once you decide that a robot 

will have some self-control, the next question is 

“how much?”  Current thinking suggests that the 

level of autonomy should be able to slide from 

tele-operated (precisely remote controlled) to 

completely autonomous, e.g. “JoeBot, get me some 

coffee.” (Baker & Yanco, 2004) 

Multi-touch displays provide a natural way for one 

or more people to control a group of robots at 

higher levels of interactivity than a mouse.  They 

have a combined interface and display, and are 

ideal for showing broad views of a scenario.   

The Multi-touch Multi-robot project is an initial 

attempt at creating an integrated multi-robot 

solution.  We expand on an existing early 

prototype from Stanford AI Lab.   

2 System Infrastructure 

 

Figure 1: Multi-touch Multi-robot Interface sample display 

2.1 Previous Work 

The Multi-touch Multi-robot Interface extends 

work done previously by people at the Stanford AI 

Lab (Ricciardi, 2009).  The prototype could accept 

raw touch input and do simple processing on that 

input.  It provided the foundation for displaying a 

map of the environment and the locations of the 

robots.  There was also support for having a robot 

follow a user-drawn path. 

2.2 Configuration Changes 

The first step in advancing the state of the project 

was to upgrade the project to work with the latest 
version of ROS.  It is important to leverage all of 

the fixes and functionality that have been and will 
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be added to ROS.   Being tied to an older version 

would require implementing code that might 

already exist. 

Launch files were added to the project to better 

compartmentalize setup and testing.  Now, the 

ROS core (including map server), 

input/visualization, and robot controllers are all 

separate components.  The overall system design is 

now as follows: 

 

Figure 2: Multi-touch Multi-robot Interface Overview 

2.3 Input Processing 

The input system for the project has been updated 

to: 

 Improve the responsiveness of the input 

 Add more types of touch inputs 

 Allow for complex input controls 

 Allow for input controls that are 

dependent on the state of the interface 

The input now follows a staged pipeline approach: 

 

Figure 3: Input System Overview 

Based on work done in user studies it is common 
for users to use multiple fingers when gesturing 

(Micire, Desai, Courtemanche, Tsui, & Yanco, 

2009).  For example, tapping on a touch screen can 

be used for selection.  Without a mouse, it is 

natural to tap with one finger, or with a few 

fingers.  To handle this behavior correctly, the 

touch processor has built-in support for multi-

finger gestures (note that this is different from 

gesture recognition with multiple strokes).   

Multi-finger gestures are handled by using a 

preprocessing step to join fingers into a group (a 

“fingerset”) and then allow fingers to join or leave 

the fingerset.  Conceptually, a fingerset most 

closely represents a few fingers on a person’s 

hand.  

Each fingerset emits events based on the state 

transitions:  

 

Figure 4: Touch Processing State Machine 

The following assumptions are being made in with 

the current implementation: 

 Once a finger is determined to be in a 

fingerset, it should not leave that set or join 

a different set.  The thinking behind this is 

that a user will move all fingers in a gesture 

in the same manner.   

 Association with a fingerset can be 

determined from the initial placement of the 

finger.  In practice, this means that a finger 

identified near another set of fingers (based 

on some distance threshold) will join the 

fingerset.  A finger far from another set of 

fingers will not join the fingerset, even if it 

later moves closer (even within the distance 

threshold) 

 Association with a fingerset can be 

determined by distance.  Even for people 

with very large hands, we assume that when 
fingers are intended to be used as a set, the 



3 

 

distance between each finger is relatively 

small. 

Notice in the fingerset diagram, that state 

transitions are mostly unaffected by single-finger 

changes. 

To improve responsiveness of the touch interface, 

the touch processor emits events at several states, 

not just terminal states.  For example, as soon as a 

finger is pressed, an event is emitted.  At the point 

of the finger press, it’s impossible to know if the 

user intends to press and hold or press and release 

(i.e. tap).  But, if the user presses in a location 

where the interface would respond the same to a 

press and hold or a tap, the interface can respond 

as soon as the press is detected instead of waiting 

for the entire tap (press and release).   

Gesture recognition is handled as a final stage.  

After a fingerset terminates with a drag event, the 

dragged path is used as an input to the gesture 

recognizer.  By the time the gesture recognizer 

processes the event, the touch processor will have 

already emitted “press” and “move” events 

corresponding to the dragged path.  In the case 

where the gesture was the intended input, the other 

events will be ignored.  And in the case where the 

other events were the intended input, there is no 

need to wait for gesture recognizer. 

For testing purposes, the mouse can simulate a 

single-finger input.  Pressing the mouse left button 

represents a finger press, and releasing the button 

represents releasing the finger. 

2.4 Robot Control 

The robot controller has been expanded to 

incorporate the idea of waypoints.  Waypoints give 

a method for allowing a user to control the robots, 

but still have the robots act autonomously.   

The implementation for waypoints is a plug-in for 

the ROS move_base module.  The waypoints are 

treated as intermediate goals, with the last 

waypoint being the final goal.  The ROS Navfn 

module is given a costmap and is used to plan a 

path between each pair of waypoints.   

The granularity of waypoints can be used to adjust 

the desired autonomy of the robot.  For example, 
giving only a single waypoint (i.e. goal) will cause 

the planner to find a best-cost path from the 

current location of the robot to the goal – a high 

autonomy situation.  At the other extreme, 

inputting many waypoints, at the scale of one per 

each cell in the map, would effectively cause the 

planner to follow your exact path.     

The current implementation of the robot controller 

supports 3 waypoint-following behaviors: 

 Standard:  The robot follows the planned 

path to the first waypoint.  Then it follows 

the path through each waypoint until it 

reaches the goal.  Then it stops.  

 Repeat:  Once the robot reaches the goal, 

it finds a path to the first waypoint and 

repeats.  This can be used for having a 

robot move in a loop. 

 Repeat in reverse:  The robot follows the 

planned path through each waypoint and 

to the goal.  Once the robot reaches the 

goal, it follows the same path in reverse.  

This can be used for having a robot patrol 

up and down a hallway.     

3 Continuous Area Sweeping 

High level tasking for robots can be thought of in 

terms of having a “playbook”.  That is, a pre-

defined set of rules that a team of robots should 

follow.  In this vein, we look at implementing 

Continuous Area Sweeping.  Previous work 

(Ahmadi & Stone, 2006) has used the assumption 

that the robots will divide the map into “regions of 

responsibility”.  Since this will eventually be used 

in conjunction with human operators, this 

constraint is relaxed for more flexibility.  

In Continuous Area Sweeping, the goal is to find a 

path through an environment such each area is 

“touched” (this might be touched in the literal 

sense if you were physically sweeping, or e.g. 

areas that we have observed when surveying).   

Continuous Area Sweeping assumes a dynamic 

environment, so the best path through an 

environment may be constantly changing.   

Continuous Area Sweeping has connections to 

several complex behaviors including surveillance, 

exploration, search & rescue, and cleaning.  We 

use “area patrolling” as a reference case for 

implementation.  There is a team of robots that 
must organize themselves to continually inspect 

each area of a map.    
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Our initial implementation makes some 

simplifying assumptions regarding the problem: 

 The robot team is homogenous – all robots 

are identical 

 Each robot has a 360 degree field of view, 

i.e. can see in all directions 

 The map can be discretized into a small 

set of cells 

 The robot can move up, down, left, or 

right, and the movement is deterministic 

3.1 Value Iteration 

Patrolling is implemented using Value Iteration.  

The reward value is based on the time since a 

location was visited and the other visible cells 

from that location.  More precisely, we use the 

sum of the difference in last visit times: 

𝑅 𝑠 = 𝑛𝑜𝑤 −

𝑣

𝐿𝑎𝑠𝑡𝑉𝑖𝑠𝑖𝑡(𝑣) 

Where 𝑣 is a cell visible from 𝑠. 

For example, say we have a map and initialize all 

cells in the map to have the same last visit time.  

This would be analogous to a robot having just 

entered the map – no cells have been visited yet.  

Then, we place a robot at cell (0,0).  The reward 

function would be updated based on the robot’s 

line of sight (Figure 5). 

 

Figure 5: "Cave" map obstacles, reward function, value 

function (with robot line of sight).  Ligher color indicates 

areas of higher value. 

Running the algorithm on a series of maps 

produces intuitive behaviors.  For the square 

corridor map the robots correctly find an optimal 

configuration.  They can see all cells, and thus stop 

moving.  In the cave map, one robot will patrol the 

bottom of the map, while the other patrols the top 

and occasionally peeks inside the cave.   

 

Figure 6: The top row shows the obstacle map and initial 

reward function for the “Square” and “Cave” maps.  The 

bottom row shows the value function for the red and green 

robot respectively.  Since the value function is 4 

dimensional, the display shows all states for the red/green 

given a fixed position for the other robot. 

3.2 Fitted Value Iteration 

When adding more robots to patrol a map, the 

computational complexity increases dramatically.  

In our case, each additional robot increases the 

state space by two dimensions (x and y 

coordinate).  Even in very small maps, this causes 

a problem, In light of this, we explored the use of 

Fitted Value Iteration (Ng, 2009) to sample the 

state space. 

In evaluating Fitted Value Iteration, we visually 

inspected the result of using a number of different 

terrain features (Figure 7).  Since the goal of Fitted 

Value Iteration is to approximate the value 

function, we used the discrete value iteration result 

of the cave map as a reference.  An infinitely 

sampled Fitted Value Iteration function should 

match exactly.  Due to the non-linearity of the 

data, our best results came from using a Locally 

Weighted Linear Regression function to fit the 

parameters.  The only features ultimately used 

were the x and y coordinates. 
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Figure 7: "Cave" map  feature functons (from left to right) 

– distance transform, X-distance transform, Y-distance 

transform, gradient, X-Gradient, Y-Gradient 

 We found it was particularly important that 

obstacle cells were always included in the sample 

set for Locally Weighted Linear Regression.  

Otherwise, there is the very undesirable effect of 

having functions that would take the robot through 

walls (Figure 8).  This is because the walls are a 

definite source of discontinuity in the value 

function.  In theory, the value function could be 

discontinuous anywhere, based on the last visits 

between cells.  In practice though, the value 

function is near-continuous in all areas except 

obstacles.  This is because robots trying to sweep 

an area are constantly moving around, leaving a 

trail of continuity.  

 

Figure 8: "Cave Map" value function approximation.  

Green dots indicate sampled points. 

4 Conclusion 

We presented the current state of the Multi-touch 

Multi-robot interface along with an explanation its 

core modules.  In addition, we showed initial work 

towards incorporating Continuous Area Sweeping 

as a high level feature.  
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