
1

Multi-Touch Multi-Robot Interface

David Millman

millman@cs.stanford.edu

Abstract

The overarching theme of this project is to

explore ways for a single user to control

multiple robots using a multi-touch interface.

In particular, how does increasing the number

of robots change both the interaction methods

and the control methods? This project aims to

the answer the question of “What types of

problems occur when controlling real robots,

and how do you solve them?”

1 Introduction

Much like cell phones have become an everyday

item in the last decade, robots are increasingly

coming into mainstream use. Despite there being

no standard interface for controlling a single robot,

we are exploring the idea of how a single person

can control multiple robots.

Imagine driving a car – your hands on the wheel.

Now imagine driving two cars at the same time,

with two steering wheels, two gas pedals, and two

brakes. This is a difficult task. Much like driving

two cars at the same time is tough; trying to drive

two robots would be just as hard. Now what

happens if you have three, four, or ten robots? It

gets even worse if you consider that the robots

may each have their own arms, too.

To remedy this single-operator-multiple-robots

control problem, we must give the robots some

level of autonomy. Once you decide that a robot

will have some self-control, the next question is

“how much?” Current thinking suggests that the

level of autonomy should be able to slide from

tele-operated (precisely remote controlled) to

completely autonomous, e.g. “JoeBot, get me some

coffee.” (Baker & Yanco, 2004)

Multi-touch displays provide a natural way for one

or more people to control a group of robots at

higher levels of interactivity than a mouse. They

have a combined interface and display, and are

ideal for showing broad views of a scenario.

The Multi-touch Multi-robot project is an initial

attempt at creating an integrated multi-robot

solution. We expand on an existing early

prototype from Stanford AI Lab.

2 System Infrastructure

Figure 1: Multi-touch Multi-robot Interface sample display

2.1 Previous Work

The Multi-touch Multi-robot Interface extends

work done previously by people at the Stanford AI

Lab (Ricciardi, 2009). The prototype could accept

raw touch input and do simple processing on that

input. It provided the foundation for displaying a

map of the environment and the locations of the

robots. There was also support for having a robot

follow a user-drawn path.

2.2 Configuration Changes

The first step in advancing the state of the project

was to upgrade the project to work with the latest
version of ROS. It is important to leverage all of

the fixes and functionality that have been and will

2

be added to ROS. Being tied to an older version

would require implementing code that might

already exist.

Launch files were added to the project to better

compartmentalize setup and testing. Now, the

ROS core (including map server),

input/visualization, and robot controllers are all

separate components. The overall system design is

now as follows:

Figure 2: Multi-touch Multi-robot Interface Overview

2.3 Input Processing

The input system for the project has been updated

to:

 Improve the responsiveness of the input

 Add more types of touch inputs

 Allow for complex input controls

 Allow for input controls that are

dependent on the state of the interface

The input now follows a staged pipeline approach:

Figure 3: Input System Overview

Based on work done in user studies it is common
for users to use multiple fingers when gesturing

(Micire, Desai, Courtemanche, Tsui, & Yanco,

2009). For example, tapping on a touch screen can

be used for selection. Without a mouse, it is

natural to tap with one finger, or with a few

fingers. To handle this behavior correctly, the

touch processor has built-in support for multi-

finger gestures (note that this is different from

gesture recognition with multiple strokes).

Multi-finger gestures are handled by using a

preprocessing step to join fingers into a group (a

“fingerset”) and then allow fingers to join or leave

the fingerset. Conceptually, a fingerset most

closely represents a few fingers on a person’s

hand.

Each fingerset emits events based on the state

transitions:

Figure 4: Touch Processing State Machine

The following assumptions are being made in with

the current implementation:

 Once a finger is determined to be in a

fingerset, it should not leave that set or join

a different set. The thinking behind this is

that a user will move all fingers in a gesture

in the same manner.

 Association with a fingerset can be

determined from the initial placement of the

finger. In practice, this means that a finger

identified near another set of fingers (based

on some distance threshold) will join the

fingerset. A finger far from another set of

fingers will not join the fingerset, even if it

later moves closer (even within the distance

threshold)

 Association with a fingerset can be

determined by distance. Even for people

with very large hands, we assume that when
fingers are intended to be used as a set, the

3

distance between each finger is relatively

small.

Notice in the fingerset diagram, that state

transitions are mostly unaffected by single-finger

changes.

To improve responsiveness of the touch interface,

the touch processor emits events at several states,

not just terminal states. For example, as soon as a

finger is pressed, an event is emitted. At the point

of the finger press, it’s impossible to know if the

user intends to press and hold or press and release

(i.e. tap). But, if the user presses in a location

where the interface would respond the same to a

press and hold or a tap, the interface can respond

as soon as the press is detected instead of waiting

for the entire tap (press and release).

Gesture recognition is handled as a final stage.

After a fingerset terminates with a drag event, the

dragged path is used as an input to the gesture

recognizer. By the time the gesture recognizer

processes the event, the touch processor will have

already emitted “press” and “move” events

corresponding to the dragged path. In the case

where the gesture was the intended input, the other

events will be ignored. And in the case where the

other events were the intended input, there is no

need to wait for gesture recognizer.

For testing purposes, the mouse can simulate a

single-finger input. Pressing the mouse left button

represents a finger press, and releasing the button

represents releasing the finger.

2.4 Robot Control

The robot controller has been expanded to

incorporate the idea of waypoints. Waypoints give

a method for allowing a user to control the robots,

but still have the robots act autonomously.

The implementation for waypoints is a plug-in for

the ROS move_base module. The waypoints are

treated as intermediate goals, with the last

waypoint being the final goal. The ROS Navfn

module is given a costmap and is used to plan a

path between each pair of waypoints.

The granularity of waypoints can be used to adjust

the desired autonomy of the robot. For example,
giving only a single waypoint (i.e. goal) will cause

the planner to find a best-cost path from the

current location of the robot to the goal – a high

autonomy situation. At the other extreme,

inputting many waypoints, at the scale of one per

each cell in the map, would effectively cause the

planner to follow your exact path.

The current implementation of the robot controller

supports 3 waypoint-following behaviors:

 Standard: The robot follows the planned

path to the first waypoint. Then it follows

the path through each waypoint until it

reaches the goal. Then it stops.

 Repeat: Once the robot reaches the goal,

it finds a path to the first waypoint and

repeats. This can be used for having a

robot move in a loop.

 Repeat in reverse: The robot follows the

planned path through each waypoint and

to the goal. Once the robot reaches the

goal, it follows the same path in reverse.

This can be used for having a robot patrol

up and down a hallway.

3 Continuous Area Sweeping

High level tasking for robots can be thought of in

terms of having a “playbook”. That is, a pre-

defined set of rules that a team of robots should

follow. In this vein, we look at implementing

Continuous Area Sweeping. Previous work

(Ahmadi & Stone, 2006) has used the assumption

that the robots will divide the map into “regions of

responsibility”. Since this will eventually be used

in conjunction with human operators, this

constraint is relaxed for more flexibility.

In Continuous Area Sweeping, the goal is to find a

path through an environment such each area is

“touched” (this might be touched in the literal

sense if you were physically sweeping, or e.g.

areas that we have observed when surveying).

Continuous Area Sweeping assumes a dynamic

environment, so the best path through an

environment may be constantly changing.

Continuous Area Sweeping has connections to

several complex behaviors including surveillance,

exploration, search & rescue, and cleaning. We

use “area patrolling” as a reference case for

implementation. There is a team of robots that
must organize themselves to continually inspect

each area of a map.

4

Our initial implementation makes some

simplifying assumptions regarding the problem:

 The robot team is homogenous – all robots

are identical

 Each robot has a 360 degree field of view,

i.e. can see in all directions

 The map can be discretized into a small

set of cells

 The robot can move up, down, left, or

right, and the movement is deterministic

3.1 Value Iteration

Patrolling is implemented using Value Iteration.

The reward value is based on the time since a

location was visited and the other visible cells

from that location. More precisely, we use the

sum of the difference in last visit times:

𝑅 𝑠 = 𝑛𝑜𝑤 −

𝑣

𝐿𝑎𝑠𝑡𝑉𝑖𝑠𝑖𝑡(𝑣)

Where 𝑣 is a cell visible from 𝑠.

For example, say we have a map and initialize all

cells in the map to have the same last visit time.

This would be analogous to a robot having just

entered the map – no cells have been visited yet.

Then, we place a robot at cell (0,0). The reward

function would be updated based on the robot’s

line of sight (Figure 5).

Figure 5: "Cave" map obstacles, reward function, value

function (with robot line of sight). Ligher color indicates

areas of higher value.

Running the algorithm on a series of maps

produces intuitive behaviors. For the square

corridor map the robots correctly find an optimal

configuration. They can see all cells, and thus stop

moving. In the cave map, one robot will patrol the

bottom of the map, while the other patrols the top

and occasionally peeks inside the cave.

Figure 6: The top row shows the obstacle map and initial

reward function for the “Square” and “Cave” maps. The

bottom row shows the value function for the red and green

robot respectively. Since the value function is 4

dimensional, the display shows all states for the red/green

given a fixed position for the other robot.

3.2 Fitted Value Iteration

When adding more robots to patrol a map, the

computational complexity increases dramatically.

In our case, each additional robot increases the

state space by two dimensions (x and y

coordinate). Even in very small maps, this causes

a problem, In light of this, we explored the use of

Fitted Value Iteration (Ng, 2009) to sample the

state space.

In evaluating Fitted Value Iteration, we visually

inspected the result of using a number of different

terrain features (Figure 7). Since the goal of Fitted

Value Iteration is to approximate the value

function, we used the discrete value iteration result

of the cave map as a reference. An infinitely

sampled Fitted Value Iteration function should

match exactly. Due to the non-linearity of the

data, our best results came from using a Locally

Weighted Linear Regression function to fit the

parameters. The only features ultimately used

were the x and y coordinates.

5

Figure 7: "Cave" map feature functons (from left to right)

– distance transform, X-distance transform, Y-distance

transform, gradient, X-Gradient, Y-Gradient

 We found it was particularly important that

obstacle cells were always included in the sample

set for Locally Weighted Linear Regression.

Otherwise, there is the very undesirable effect of

having functions that would take the robot through

walls (Figure 8). This is because the walls are a

definite source of discontinuity in the value

function. In theory, the value function could be

discontinuous anywhere, based on the last visits

between cells. In practice though, the value

function is near-continuous in all areas except

obstacles. This is because robots trying to sweep

an area are constantly moving around, leaving a

trail of continuity.

Figure 8: "Cave Map" value function approximation.

Green dots indicate sampled points.

4 Conclusion

We presented the current state of the Multi-touch

Multi-robot interface along with an explanation its

core modules. In addition, we showed initial work

towards incorporating Continuous Area Sweeping

as a high level feature.

Acknowledgements

Thanks to Morgan Quigley for the fruitful

discussion about the project, and for assistance

with ROS.

References

Ahmadi, M., & Stone, P. (2006). A Multi-Robot

System for Continuous Area Sweeping Tasks.

IEEE International Conference on Robotics and

Automation, (pp. 1724–1729).

Baker, M., & Yanco, H. A. (2004). Autonomy

Mode Suggestions for Improving Human-Robot

Interaction. IEEE Conference on Systems, Man,

and Cybernetics.

Micire, M., Desai, M., Courtemanche, A., Tsui, K.

M., & Yanco, H. A. (2009). Analysis of Natural

Gestures for Controlling Robot Teams on Multi-
touch Tabletop Surfaces. Retrieved 2009, from

http://robotics.cs.uml.edu/fileadmin/content/public

ations/2009/2009-06-16-TableTop2009.pdf

Ng, A. Y. (2009).

http://www.stanford.edu/class/cs229/. Retrieved

2009, from

http://www.stanford.edu/class/cs229/notes/cs229-

notes12.pdf

Quigley, M., Gerkey, B., Conley, K., Faust, J.,

Foote, T., Leibs, J., et al. (2009). ROS: an open-

source Robot Operating System. Open-Source

Software workshop at the International

Conference on Robotics and Automation.

Ricciardi, T. (2009). Multitouch Nav. Retrieved

2009, from ROS:

http://www.ros.org/browse/details.php?name=mult

itouch_nav

