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Abstract 
 
Our goal was to create a learning algorithm that can play the classic 
board game, Risk, a game in which players control territories that 
produce armies, which the players can use to conquer the territories of 
others.  It offers an intriguing environment in which to deploy an AI 
player, with many different decisions to be made, and a wide variety of 
gameplay aspects affecting those decisions.  We first implement several 
deterministic AI players that will focus on maximizing separate elements 
of the game, therefore responding formulaically to isolated game 
situations.  Our learning algorithm used these AIs as training partners.  
However, it adapted to game situations based off of a decision tree where 
we adaptively weighted our possibilities of achieving future situations 
and the relevancy of distances to surrounding territories.  This AI played 
multiple games in order to generate more diverse data, and is optimized 
to increase its effectiveness. 
 

1. Introduction 
1.1 – Motivation 

Risk tends to be a very entertaining game due to the constantly evolving 
situations that unfold during repeated sessions.  However, from personal 
experience, we have found that most AI players in computerized versions 
of Risk tend to fall into predictable (and thus, exploitable) patterns, 
making these versions of the game rather trivial to beat.  Granted, the 
game is somewhat cyclical in nature (spend a few turns building up an 
army, go out on an attack, fix up defenses, build up another army, etc.), 
so even human players can tend to fall into patterns.  However, many of 
the best of them do not.  The best strategies in Risk are adaptive, 
reacting to game situations as they unfold, rather than rigidly adhering 
to some sort of master plan. 
 
Additionally, there are many "unwritten rules" to Risk that any human 
player figures out very quickly, which many AI’s tend to struggle with.  
For example, while conquering the entire continent of Asia provides an 
appealingly large unit production bonus, it is virtually impossible to 
maintain control of the entire continent.  It simply has too many borders 



and its centralized location frequently makes it a staging ground for 
conflict.  On top of this, when a player controls Asia, that same appealing 
unit production bonus makes him an immediate top-priority threat that 
other players will concentrate on dealing with.  Our hope is that a 
learning algorithm could identify these types of counterintuitive 
situations and behave more intelligently than a deterministic AI, without 
being explicitly programmed to do so. 
 
1.2 – Problem Definition 

The problem can somewhat be boiled down to a classification task, in 
which our algorithm will be choosing it’s set of actions depending on the 
current status of the board.  If it’s in a powerful position, it should tend 
to attack more.  When troops are low, it will want to defend and increase 
troops at its borders in order to stave off impending attacks from 
opposing players. 
 
1.3 – Dataset 

We actually did not start with any sort of dataset.  We gave our algorithm 
arbitrary weights, which it will gradually adjust and converge using 
logistic regression over time.  Our dataset will actually be generated 
through playing numerous games.  While pitting our deterministic AIs 
against one another, we will be generating data and storing it into a file.  
It may be prohibitively slow to re-train the AI every game, we’ll probably 
have it play games in clusters, and then re-train to apply what it learned 
after each set of games.  It then starts with it’s optimized weights from 
the previous games, and will adjust them in accordance with the current 
game. 
 

2. Approach 
 
Currently, we have recreated Risk as a text-based game played through 
the consol, with a Player super-class that is queried throughout the game 
for decisions (for example, the Human Player extension of this class 
simply prompts the user for input).  We have implemented a system of 
reading preconfigured game boards from a file, so that we can easily 
create desired situations, rather than hoping that they unfold as the 
game progresses.  This also allows us to play on various board sizes, and 
scale the game up and down in complexity. 
 
2.1 – Deterministic (“Dummy”) AIs 
 
We have produced 6 “dummy” deterministic AI players, which basically 
respond formulaically to the current state of the board.  Each AI’s 



behavior is an exaggeration of certain tactics or playing styles frequently 
employed by human players.  They are listed below: 
 

1) Aggressive – attack everything possible 
2) Bully – attack whenever victory is essentially guaranteed 
3) OCD – aggressively maintain current territorial holdings 
4) Border Patrol – just defend borders 
5) Wanderer – put all armies in one “horde” that wanders around the 

board 
6) Distributor – distribute all armies evenly across territories 
 

Originally, our dummy AIs were going to help our learning algorithm 
train based off of different game situations and help it act appropriately 
depending on what kind of position it was in.  Eventually, they just 
ended up acting more like sparring partners, allowing the AI to retrain 
it’s weights to adjust to each different AI, which in turn would affect it’s 
actions.  Studying their patterns and habits also enabled us to observe 
and create a mix-and-match strategy We tried to cover as many bases as 
possible in terms of playing style with each AI so that after multiple 
games, the AI would be able to adapt much more quickly to future 
opponents. 

The Aggressive AI and the Bully AI definitely surprised us.  We 
expected in a set of trials that they would probably win the majority of 
them, but the speed of the games and the adeptness with which they 
defeated their opponents reinforced our belief that the AI should attack 
when given the opportunity rather than wait.  This actually helped 
simplify our process somewhat. 
 
2.2 – Attacking Strategy  
 
Our algorithm learns by optimizing a set of two different discount factors 
α and γ.  During a game when it is the AI’s turn to attack, it will consider 
the full set of available actions A (including A0: the “do nothing” action 
that indicates the end of a turn), where each action Ai is a tuple 
containing the territory used to attack, the target of this attack, and the 
number of attacking dice rolled.  For each of these actions, there is some 
uncertainty about the resulting game state due to the randomness of the 
dice, so the perceived value of this action is assessed to be the sum of 
each possible resulting state reward weighted by the probability of 
ending up in this state. 
 
The reward for a resulting state is calculated using several different 
factors.  The first is Fa(0), the current fighting force of the attacking AI, 
which is the sum of armies from all its territories weighted by relevancy 
to the current action.  This relevancy is determined by the distance away 



from the territories involved in the action using the discount factor α.  
For example, if there were n troop in a territory d hops away from our 
action, it would contribute αd * n to Fa(0).  Similarly we have Fd(0), the 
current fighting force of the defending opponent.  There is also Pa(0) and 
Pd(0), the number of armies produced by each player at the beginning of 
their next turn given the current board state.  The resulting state will 
have values Fa(1), Fd(1), Pa(1), and Pd(1), which are simply these values 
recalculated for the potential resulting state.  The reward is then: 
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or the difference between the ratios of how “well off” the attacker AI is 
compared to its opponent after taking this action. 
 
The resulting state’s reward, however, need be calculated only if the AI’s 
turn were to end after that action.  Since an AI can take many actions 
over the course of one turn, these resulting states can be further 
expanded by considering the new set of actions available at that state.  
This creates a tree structure terminating in A0 actions nodes whose 
values are calculated using the formula above.  This value is passed 
upwards through the tree to the state node S that was considering this 
action.  S determines its reward to be the maximal value of the A’s 
available to it, weighted by the discount factor γ.  In this sense, γ 
determines the relative importance that our AI places on future 
possibilities when considering actions. 
 
2.3 – Learning 
 
The learning comes in the two discount factors α and γ.  Essentially, they 
are found to the optimal values for the effectiveness of the AI (the 
percentage of games it is observed to win).  We update them alternating 
between the two. For some given α, the learning process plays through 
many games to find the optimal value for γ, and then the resulting γ is 
then used to assess the effectiveness of the algorithm.  In this way we 
create a series of training examples [ α(i), ω(i) ], where α(i) is the discount 
factor used and ω(i) is the observed effectiveness of using this α(i).  Initially 
a set α(i) is chose across the range [0,1], which yields a set of training 
examples that we can apply a polynomial regression to.  The resulting 
function W can then be used to find the optimal α that maximizes 
effectiveness.  For this optimal α we can find an optimal γ, which together 
can be assessed by the new effectiveness ω.  Together with α, this ω 
creates a new training example, which when added to the training set 



produces a new W, which in turn can be used to find an updated optimal 
α.  This process is repeated until the updates to α and γ converge. 
 
At each iteration of this learning, the optimal γ is found for a given α in a 
similar fashion.  A set of [ γ(i), ω(i) ] training examples is computed which 
is used to train a polynomial regression function W.  The value of γ that 
optimizes this W is then assessed to find a new ω, which creates a new 
training example that is added to the training set. 
 
2.4 – Other Decisions 
 
Defending: 
This action was strictly deterministic. If the attacker were to roll one die, 
we would defend with two die (if possible) no matter what.  Rolling 
aggressively against the attacker's single die gives us a strict advantage 
in that we have more chances of winning the roll. 
 
In the case that the attacker rolled multiple die, given a choice, we would 
defend with two die only when their lower dice roll was a 3 or less.    
Rolling on a 3 was somewhat of a judgment call that we made 
deterministically since it has approximately a 50% probability of either 
player winning the roll.  Otherwise, we would only defend with one dice. 
 
Fortifying: 
For this algorithm, we actually would apply our own attacking learning 
algorithm in terms of our opponent’s troops and fortify our troops 
accordingly in order to minimize our expected losses. 
 

3. Future Considerations 
 

1) Be able to read and train on game situations using somewhat of a 
reinforcement-learning algorithm.  Through playing multitudes of 
games, we would be able to see favorable outcomes (conquering a 
continent, eradicating an opponent’s strong troop base, etc.) and 
be able to use those in our current learning scheme. 

2) We made modifications in order to make the game of Risk simpler.  
For example, we created randomized balanced board states at the 
beginning of games.  We also did not introduce the concept of risk 
cards in the game since that would add an extra element to the 
game. 

3) Currently, we have a deterministic defending strategy.  We made a 
judgment call based on the result of an attacker’s roll that human 
players frequently use in order to simplify the problem.  However, 
we would like to have let the AI come to this decision itself based 
on the board state. 


