
CS229: Machine Learning Project Final Writeup 

Force Feedback Learning Applied to Robot Object Handling 

Cason Male 

 The purpose of my machine learning project was to apply learning algorithms to a robotic hand, 

in order to better hold and pick up various objects.  My project was part of STAIR or the Stanford 

Artificial Intelligence Robot whose next goal is to clean off a cluttered desk filled with objects the robot 

has never seen before.  My project for Machine Learning was to use the existing STAIR software and 

hardware to implement force feedback control in the fingers of the robot.  More specifically, my project 

focused on the classification problem of detecting when the robot was actually touching an object and 

when it wasn’t.  I worked with Quoc Le who helped guide me through this specific project task.   

 At first I didn’t believe that applying learning algorithms would be necessary to solve the task; 

that adding resistive force sensors to the fingertips of the robot would be enough to detect when the 

finger is touching an object and when it is not.  The problem occurs from the elastic hysteresis property 

of the ‘skin’ of the fingertip.  The skin is an outer covering on the finger that transfers external forces to 

the underlying sensors within the finger.  The elastic nature of 

the skin causes hysteresis when a force is loaded and 

unloaded to the finger.  Elastic hysteresis means that the 

deformation of the skin is not consistent when loading and 

unloading a force.  The material requires less force to deform 

the same amount when unloading as compared to loading. 

This means there is a period of time when the load is 

removed, the material remains deformed and slowly comes 

back to its original shape.  What this means for the project is 

that although a load is removed from the finger skin, the skin 

remains deformed for some time after and so triggers the 

touch sensors beneath it.  Without learning, unloading causes 

the sensors to detect a ‘touch’ even though the load from the 

object had already been removed.  The only way to solve this problem was by optimizing the mechanical 

design and using learning algorithms to train the finger to know what a real touch is.  

The first half of my machine learning project was focused on perfecting the mechanical design.  

The fingertip design was a long process but proved to be time well spent to make learning process 

easier.   Results from testing the force feedback in the sensors relies heavily on the design of the finger 

and finger skin which can be optimized to make it easier for the learning algorithm to find better 

solutions for touch and slippage when grasping objects.  The model used in previous attempts to make a 

robot finger I slightly modified for the project but the basics are the same.  It is important for the design 

to expose the sensors directly to the skin in a way that outside forces will be directed towards the 

underlying force sensors.  In this way the surface that can detect contact should be maximized.  It was 
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very important to keep the three sensors secured to the base of the finger directly without any elastic 

material between them and the finger model which was used before I began work on the finger.  

Most of my work on the mechanical design was for skin fabrication for the fingers of the robotic 

hand.  Many different materials were tested for the finger in order to find the right one for the 

application.  I got to test and fabricate skins in the Mechanical 

Engineering lab with the help of Barrett Hyneman and John 

Ulmen from Mark Cutkosky’s lab.  The previously used material 

for earlier iterations of the finger skin was not strong enough to 

last many cycles of picking up small objects or even fewer cycles 

for heavier objects.  The final material used is a TAP silicone RTV 

which is durable while providing a reasonable amount of force 

transmission to the underlying sensors.  The biggest problem in 

fabricating the skins was actually getting a smooth cast without 

any air bubbles.  Many different techniques were used in order to create a decent cast for testing.  

Modifications were also made to the fingertip mold itself to improve the skin shape.  The previous 

model has a groove in the top for the skin to slip into as a way to provide a good fit on the finger without 

using any kind of adhesives.  However, the grove in the 

finger and the notch in the skin were not compatible.  To 

fix this, the groove made for the mold was removed so the 

skin is flat along the finger model everywhere except of 

course in the sensor region which has three pads made to 

contact with the force sensors.    

One of the other major problems with the original 

fingertip design was the attachment of the sensors.  Some 

sort of adhesive tack was used previously which provides 

many potential errors for sensor feedback.  Since the 

material was compliant, it acted as a cushion between 

each sensor and the finger model itself.  This is not a good 

design since it brings a damping effect into the sensor 

reading, making it harder to collect real data that reflects 

the force acting on it.  Instead, the tack was removed and 

each sensor was trimmed and super glued directly to the 

finger model.  With a hard surface behind each sensor, 

force readings will be much more accurate since each sensor now takes on the direct force applied to 

the skin without compliance.   

 Once the mechanical design was robust enough and optimally designed for testing, sample data 

was needed for the learning algorithm to train on.  Data collection was made by the Phidget USB input 

data device which was directly connected to each of the finger sensors.  The Phidget has the capability 

of collecting data from up to eight sensors but for my project, only three were needed for the finger.  To 
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classify the binomial distribution of the data, Support Vector Machines were the optimal choice using a 

linear kernel. Data was collected for the SVM by recording data sets that were pre-labeled to be a touch 

or no touch.  To do this, I told the program that the data collected in the next X hours would have the 

‘touch’ label which is 1. I would then press on the finger pad for a number of hours while data was 

collected.  I repeated the process again for ‘no touch’  label -1 where I let the program record force 

sensor values in the finger for a number of hours without the finger having any external loads applied to 

it.  This process took a number of iterations to collect adequate data for the SVM to learn properly.  

After the first iteration I tested the SVM which drew the boundary so that soft touches were not being 

detected by the finger.  To fix this I recorded more ‘touch’ data, this time making sure I gently pressed 

the surface of the finger skin.  After enough iterations of data collection the SVM was able to find a 

proper boundary to distinguish a real touch from a false one.   

 Integration of the SVM algorithm into the existing robot controller was the next task.  The touch 

function I created in C initializes the phidget data hardware then reads in the touch sensor values which 

are then evaluated in the SVM algorithm.  The values are then multiplied as an inner product with the 

generated SVM parameters:  ω
T
x with an intercept value of 0.  If the resulting value is greater than zero 

than the function returns a touch.  Otherwise if the resulting value is less than zero, a ‘no touch’ is 

returned.  This function had to be written in C to use the phidget C libraries but the arm control program 

is written in Python.  In order to get these programs to communicate, I used the Simplified Wrapper and 

Interface Generator, which simply wraps the touch function as a Python module to be used in the robot 

control code.  The program is able to constantly loop and check for a touch event from the finger in real 

time.   

Currently the control code monitors a single 

finger, since I was only able to fabricate one new finger 

for testing.  The code does work well for the single finger 

and successfully reacts to the feedback in the finger tip 

when grasping objects.  Before my work, the robot 

simply grasped its hand around an object until the 

motors could not clench the fingers any further.  This has 

the potential for many problems, and from a mechanical 

standpoint, working the motors in this way is not good 

for the arm.  After my feedback integration was 

implemented, the robot now stops closing its hand once 

a touch is detected by the finger. The other big fix due to 

the force feedback in the fingers is slip detection of an object from the robot’s hand.  Previously, if the 

robot grabbed an object and moved it to a new location, there was no way to detect if the object had 

slipped out of the hand during the transition.  The finger sensors now prevent against this and similar 

problems since the robot can detect in real time if it is grasping an object or not.   

The results of the first force feedback finger sensor were successful but there is a lot of potential 

for this new application and much room for improvement which I would like to pursue in the next 

quarters.  One of these improvements would be to tweak the mechanical design of the finger and skin to 
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make a greater touch surface along the whole finger.  Although the current version works, sensing is 

directed only along the top of finger and not along the sides.  Side sensors will be critical for slip 

detection which is a huge area of potential for the finger sensing application.  It is quite possible to get 

the robot to learn how to adjust for object slippage on the transition to prevent objects from falling.  For 

instance, when sensors read a particular value, the robot should learn to reorient its hand or grab the 

object tighter.  I also plan to build two more fingers to complete the hand.  Once three fingers are in 

place, the controller will be adjusted to monitor each finger individually.  In the future when the hand 

closes, each finger will stop when it detects its own touch and adjust as the object shifts within the grasp 

during movement.  The last part will be to integrate this with the path planning and object recognition 

projects being currently worked on.  I thoroughly enjoyed working on this project due to my passion for 

robotics and getting a chance to apply machine learning from class.   Coming from Carnegie Mellon with 

a desire to continue my robotics studies at Stanford, it was a pleasure and privilege to be able to work 

with the famous STAIR robot and learn the fundamentals of machine learning in CS229. 


