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Abstract  
Antenna lobe (AL) in the Drosophila brain is composed of ~50 glomeruli. Each of the glomeruli 
has a stereotyped shape, position, and neuronal composition. However, manually identification 
of the glomeruli usually is very time consuming and demands high familiarity with the structure. 
In this project, we applied Principle Component Analysis method via Singular Value 
Decomposition to identify a single glomerulus in AL. 105 training examples were used to 
construct the eigen basis for the AL image. Based on the coefficient of constructing AL eigen 
basis, the eigen basis for the target glomerulus images in the training set was also calculated. To 
identify the target glomerulus in the test examples, its AL image information was used as the 
input. The test results from the about 40 examples showed reasonably good reliability and 
robustness of the algorithm. Although we only trained the algorithm to identify a certain 
glomerulus (V glomerulus) in this case, this approach should also be applicable to other 
glomeruli so that many glomeruli in the AL can be recognized automatically.   

 
1. Introduction  
1. 1 Antenna lobe and glomeruli 
AL is the primary odor processing center in the model organism Drosophila Melanogaster (fruit 
fly). Over the last decade, biological research on neurons in AL has provided many insights on 
the development, organization, and information processing of the neural circuit [1-4].  AL has a 
very clear and stereotyped anatomy. One AL is composed of about 50 glomeruli, compactly 
packed into a 3D structure. Each glomerulus has its specific shape and localization in AL [5, 6] 
(Fig.1). Usually, a certain AL olfactory neuron innervates a single or a certain combination of 
glomeruli. By identifying the innervated glomeruli, the neuronal identity can be assigned. Thus 
in many studies on these neurons, an important step is to identify the glomeruli. This is usually 
accomplished by carefully comparing the morphology with a reference (like Fig 1b) and requires 
a lot of experience and time from the researcher. It would thus be very useful to develop an 
automatic method to reliably identify the glomeruli in AL.  
  
1.2. Motivation and Principles 
We propose to address the problem by first training an algorithm to recognize one of glomerulus. 
Then similar approach can be applied to the identification of other glomeruli one by one. In the 
end, given an AL image, a tagged AL like that in Fig. 1b can be automatically generated. To 
achieve one-glomerulus identification, we can take advantage of the neuronal organization in the 
AL. There are ~60 classes of odorant sensory neurons (OSN) in the fly. OSN project their axons 
into the AL and each class of OSN converge their axonal terminals into a single glomerulus. 
There are genetic methods available to label each class of the OSN. By labeling a single class of 
OSN, the corresponding glomerulus is labeled as well. This biological approach can be utilized 
to train the computer where the target glomerulus is localized.  On the other hand, the whole AL 
morphology, as well as other neuropil, can be immunostained with specific synaptic markers 
independently from the ORN labeling. We will use the image from samples with both AL and 



target glomerulus labeled to train the algorithm and then when a new image with only AL is 
introduced, the glomeruli identity will be assigned to it.   
 
To develop the algorithm, we started from some intuitive methods based on our observation of 
the AL and target glomerulus. But these methods may lack the generality to other glomerulus and 
we thought a general machine learning method might be more robust. Specifically, we figured 
that the glomeruli identification is somehow similar to the face recognition problem and we 
might borrow some principles from the latter one.     
 
Principle Component Analysis (PCA) is a widely used method for face recognition. In PCA, a set 
of ‘eigenfaces’ are first abstracted from the training data. Through the projection operation, a 
face image can be calculated as a weighted sum of the eigenfaces.  By comparing these weights 
to those of known individuals, a new face can be recognized [7]. Eigenfaces with large singular 
values represent the more general features of the given faces, while those corresponding to 
relatively small singular values feature the variation among the faces. The eigenfaces with really 
tiny singular values can be to some extent treated as the unexpected distortion in the training 
data.  
 

 
Figure 1. Anatomy for a fly brain and a AL. a. Scheme of the anatomy of a fly brain. An AL was circled out. b. A  
more detailed scheme for the circled AL as shown in A. The AL as seen from the anterior. Lateral is to the right, 
dorsal on top. 15 glomeruli are named in this figure [5, 8].  
 
In the case of glomeruli identification, we took advantage of the correlation between the two 
intensity matrices in the same example (AL matrix--labeling mostly AL and some other brain 
regions, and target glomerulus matrix--only highlighting the glomerulus we are trying to identify 
), and correlated their ‘eigenfaces’. Specifically, the AL matrices were used to calculate the eigen 
basis for the AL feature space. Technically, each AL eigen basis can be represented as the 
weighted sum of the training AL vectors. The same weights were then used to calculate the 
corresponding eigen basis for the target glomerulus feature space. When a new AL image was 
given, it was projected to the AL eigen basis and the coefficients of the projection was treated as 
the weights to sum up the target glomerulus eigen basis and thus construct the target glomerulus 
for the new AL image. The location of the constructed glomerulus in the new AL image therefore 
was assigned the identity of the target glomerulus.   
 
Moreover, we tried to avoid possible local distortions in the images and to predict the location of 



the glomerulus in its most reasonably possible place. We figured data compression (reduce the 
matrix dimention) could mitigate those undesired intensity fluctuations. Besides, we also 
dropped the singular vectors with tiny singular values when we constructed the basis. This 
improved the recognition result and lowered the computation complexity. In addition, the images 
were scanned with roughly good alignment from symmetry intuition of the experimenter, which 
dramatically reduces the dimension of basic space and allows the use of techniques similar to 
face recognition for glomeruli identification. 
 
 
2. Methods and Results 
2.1 AL and target glomerulus images 
The AL and target glomerulus (V glomerulus, labeled with Gr21a-Gal4, UAS-RFP) images in 
the training and test set were obtained by confocal laser scanning microscrope in Liqun Luo lab 
at Dept of Biology in Stanford University. For each fly sample, the whole brain was dissected out 
and immunostained against the presynaptic marker nc82 (labeling neuropil and thus revealing 
AL as well as other brain region structures) and the RFP (labeling the target glomerulus). The 
secondary antibodies are conjugated with different fluorophores so that the neuropil and target 
glomerulus can be spectrally separated--the neuropil (AL regions) was in the purple channel 
whereas the target glomerulus was scanned in the red channel as shown in Fig 2. Since the AL is 
about 50um×50um×50um, 40~50 single plane images were taken (with 1um step in between) to 
go through the whole depth of AL. At each single z plane, a 512 pixel ×512 pixel scanning was 
performed at a resolution of 4.8 pixels/um. The zoom in the x-y dimension was slightly adjusted 
from sample to sample so that the scanned ALs were about similar sizes laterally. An example 
scanned sample is shown in Fig 2.  The target glomerulus usually spans 2/5 of the entire z stack.  

 
Figure 2 AL and target glomerulus images from a sample. a. The AL images. b.Target glomerulus images. c. 
Overlay of the AL and target glomerulus images. *1, the maximum projection of the whole z stack (z total is 46); *2, 
*3, *4, *5, *6, single z plane image from z=1, z=12, z=23, z=34, z=45, respectively. *=a, b, c. AL is labeled in 
purple. Target glomerulus is labeled in red.  
 
 
2.2 Data processing 



Each sample image usually contains 40~50 z planes. Each z plane (denoted as an example) has 
two separate channels, one for AL and one for the target glomerulus. The training set is a 
collection of 105 single z plane images (examples) from 5 AL samples, with 21 examples per 
sample, usually the middle ones of the z stack.  We didn't choose exactly the same z planes cross 
samples, since the samples had different sizes and occupied different depth, and there was no 
standard reference points at which to start and end the z stack during image acquisition--just 
roughly from the emergence to the disappearance of the AL. Each example was read by 
MATLAB as a 512*512*2 matrix, where 512 is the number of pixels in x/y dimension and 2 
refers to the two sets of matrices (AL and the target glomerulus).  
 
The scanned images usually contained noises (due to the nonspecific immunostaining) and had 
regions outside AL labeled. We manually removed those images either with too much noise or at 
undesired z plane (with a lot of other brain regions) beforehand, which comprised about 15% of 
the total collected data.  
 
Another step we took at this stage was data compression, to reduce random noises (due to shot 
noise and dark noise) and to reduce the data dimension. By reducing the dimension from 
512×512 to 64×64, the processing time dropped from 20 ~ 25 minutes to a few seconds, with not 
much influence on the target glomerulus identifying accuracy. But 64x64 was not mandatory, and 
we actually worked on images at both 256×256 and 64×64 resolutions. 
 
2.3 Eigen Basis Construction 
The 512x512 intensity matrix for each channel in a given example was reshaped into a 262144 
(=512x512) dimension vector. A 262144x105 AL training matrix M=[m1, m2, ... , m105] was thus 
formed where each column represented one AL training image. Similarly, N=[n1, n2, ... , n105] 
was used to denote the training matrix of the target glomerulus. The mean value of m1, m2, ... , 
m105 (mmean) was then subtracted from m1, m2, ..., m105 to form M*=[ m1*, m2*, ... , m105*]. The 
AL image of mmean is shown in figure 3. 
 

 
 
In order to centralize the final decision of the position of the targeted glomerulus, we also pre-
eliminated all the points whose intensities were smaller than a particular threshold in the 
glomerulus -- by setting the corresponding matrix element to zero. In our particular example, we 
set the threshold to be 20% of the maximum intensity value in each column.  
 
The left singular vectors of M* formed the eigen vectors of the whole AL image space. Due to 
the extremely high dimensions, it was impractical to do singular value decomposition in 
MATLAB directly. A viable approach was to find the left singular vectors from their 

Figure3. The mean of 64x64 AL images in the training set. Note: 
AL is artificially labeled in red instead of purple for the 
convenience of displaying images.  



corresponding right singular vectors whereas the right singular vectors were eigenvectors of 
M*TM*, a 105×105 matrix.  
 
The formula to transform from right unitary singular vectors to left unitary singular vectors is 
given by / , where  is the non-zero th eigenvalue of M*TM*,  is the th 
unitary eigenvector of M*TM* or the th right unitary singular vector of M*, and  is the th left 
singular value. 
 
Singular vectors corresponding to the singular values smaller than a certain threshold were 
dropped. Since we had about 100 training examples in this case, we set the threshold to be 
0.0003 of the largest singular value. The eigen basis space we obtained in the end was composed 
of about 64 eigenvectors. The first 4 AL eigen images were shown in the red channel in Fig 4. 
 
2.4 Identify the target glomerulus in each of the eigen basis vectors 
The eigen basis for the target glomerulus was calculated based on the principle discussed in 
section 1.2. The eigen basis for AL matrix was first obtained. Each eigen basis can be considered 
as an linear combination of all the example AL vectors (the column vector of M*)—to calculate 

, for example, the coefficients were actually the corresponding elements in . The same 
coefficient for the linear combination was used to form the eigen basis for the target glomerulus 
matrix. Mathematically, the matrices corresponding to the AL and target glomerulus are M*=[ 
m1*, m2*, ... m105*] and N*=[ n1*, n2*, ... n105*]. {u1, u2, ...uk} ( 64 in our case) form the 
eigen basis of the AL image space, and ∑ , then ∑  gives the th 
eigen basis vector for the target glomerulus image space. The plot of the first 4 eigen basis with 
the corresponding glomerulus labels are shown in the green channel in Fig 4 (from 512x512 and 
64x64 respectively for comparison).  

 
Figure 4. The first 4 calculated eigen images at 512x512 and 64x64 resolutions. a. Eigen images at 512x512 
resolution. b. Eigen images at 64x64 resolution. Red: AL channel. Green: target glomerulus channel. Yellow: 
overlay.  

 
To get an idea about the singular vectors corresponding to relatively small singular values we 
also plotted the 70th and 80th singular vector in Fig 5. In these plots, the intensity was relatively 



uniformly distributed and didn’t even fit into the preliminary shape of AL. It confirmed our 
speculations that they rather carried the noise information. Another important aspect worth 
noticing was that we almost couldn’t see any target glomerulus labeling there, which also 
validated our decision to drop these singular vectors corresponding to really small singular 
values. 
 
 

 
 
 
2.5 Test principle and result 
The 60 test examples were collected under the same imaging conditions, and selected from the 
same criteria regarding to the z plane, noise level and image distortion. The same preprocessing 
steps were carried on these test examples. We also made sure that none of the test examples were 
taken from samples used in the training set. 
 
To identify the position of target glomerulus in the test examples, our strategy was to construct 
the target glomerulus based on the AL image in the same example set. To achieve that, we first 
projected the AL matrix of the test example onto the AL eigen basis vectors {u1, u2, ... , uk=64} as 
was usually done in the face recognition process. Then the same set of projection coefficients 
were used to calculate the weighted combination of the target glomeurlus eigen basis vectors 
{w1, w2, ... , wk=64}.  Mathematically, n ∑ b w , where b m Tu , and u , w are 
the eigenbasis for the AL matrix and target glomerulus matrix. Randomly chosen results are 
shown in Fig 6. We can see that the algorithm can predict pretty well the location of the target 
glomerulus when the test AL image is close to the mean of training AL image (Fig 6 b1,b2). 
When the test AL image is far off the mean of training AL image, the predicted target glomerulus 
is roughly around the true region.  
 

Figure 5. The 70th and 80th eigen images 
at 512x512 (a) and 64x64 resolution. Red: 
AL channel. Green: target glomerulus 
channel. Yellow: overlay.  



 
Figure 6. The test result of predicting target glomerulus position at 512x512 and 64x64 resolutions. a. Three 
samples of the predicted target glomerulus position at 512x512 resolution. Red: test AL image; Green: predicted 
target glomerulus; Yellow: Overlay.  b. Three samples of the predicted target glomerulus position at 64x64 
resolution.  For each bi, the image on the left is the overlay between the real target glomerulus (red) and the 
predicted target glomerulus (green), the image on the right is the overlay between the AL (red) and the predicted 
target glomerulus (green).  
 
3.  Discussions and Future Work 
The approach we applied to identify the glomerulus in our project mainly originated from the 
PCA face recognition algorithm. Although the estimation on the position of the target glomerulus 
was quite satisfactory, our method didn’t fully utilize the information contained in both the 
training and test data, or capture the unique properties of this specific problem. Both the training 
and test data describe dynamic process (data went through a series of z planes) and a close 
observation showed that there was actually a close relationship between the intensity change of 
the elements for the target glomerulus and non-target glomerulus parts over the Zs. Plots of the 
intensity change of the glomerulus randomly chosen from the training example in contrast with 
the non-target intensity change are shown in Fig 7. 
 
The plots of intensity change shows that the intensity for the target glomerulus is more 
concentrated on the left side (corresponding to smaller z numbers). Their intensity is also less 
spread and generally has only one peak. One the other hand, the intensity of non-glomeruli 
elements are more sparsely distributed and could have multiple peaks. Those differences could 
be mathematically captured with x ∑ x y / ∑ y , var ∑ x  x y / ∑ y .  
 



 
Figure 7. The intensity change with depth. a. The intensity change of the glomerulus region over depth from four 
samples. b. The intensity change of the non-glomerulus region over depth from four samples. The y-axis is the 
intensity, and the x axis is the depth (number of the z plane).   
 
However full dependence on those features, as we tried, was not an optimal choice. The test error 
from the true value was more obvious. Our next step is to try to combine these two approaches to 
see if we could get better results. 
 
 
4. References 
 
 
1. Olsen, S.R. and R.I. Wilson, Lateral presynaptic inhibition mediates gain control in an olfactory circuit. 

Nature, 2008. 452(7190): p. 956-60. 
2. Wang, J.W., et al., Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. 

Cell, 2003. 112(2): p. 271-82. 
3. Vosshall, L.B. and R.F. Stocker, Molecular architecture of smell and taste in Drosophila. Annu Rev 

Neurosci, 2007. 30: p. 505-33. 
4. Komiyama, T., et al., Graded expression of semaphorin-1a cell-autonomously directs dendritic targeting of 

olfactory projection neurons. Cell, 2007. 128(2): p. 399-410. 
5. Laissue, P.P., et al., Three-dimensional reconstruction of the antennal lobe in Drosophila melanogaster. J 

Comp Neurol, 1999. 405(4): p. 543-52. 
6. Couto, A., M. Alenius, and B.J. Dickson, Molecular, anatomical, and functional organization of the 

Drosophila olfactory system. Curr Biol, 2005. 15(17): p. 1535-47. 
7. Turk, M. and A. Pentland, Eigenfaces for Recognition. Journal of Cognitive Neuroscience, 1991. 3(1): p. 

71-86. 
8. Heisenberg, M., Mushroom body memoir: from maps to models. Nat Rev Neurosci, 2003. 4(4): p. 266-75. 
 
 


