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Introduction

Options hedging has important applica-
tions in risk management. In its most sim-
ple form, options hedging is a trading strat-
egy in a security and a risk-free bank ac-
count. An option written on the security
is hedged by this strategy if the strategy
is self-financing, and replicates the price of
the option at all times and in all states
of the world. In the simple Black Scholes
model, where only one source of uncer-
tainty is present, it can be shown that such
strategies do exist and an analytical ex-
pression can be found for the proportion of
wealth that should be invested in the un-
derlying security. For an options seller as
well as an options buyer, this trading strat-
egy is important to know, since being short
the option but long the hedging strategy or
vice versa allows the seller/buyer to elimi-
nate the risk associated with selling/buying
the option.

In a real life setting, many of the Black-
Scholes assumptions are violated. There
are many sources of risk and agents in-
cur transaction costs, so a perfect hedg-
ing strategy cannot be expected to ex-
ist. A more realistic approach for an op-
tions trader is to minimize, not eliminate,
their risk by rebalancing their portfolio dis-
cretely. The size of the time steps be-
tween adjustments would then depend on
the volatility of the market, the size of the
portfolio, and the size of the transaction
costs incurred at each trading round. A

discretely rebalanced trading strategy will
only approximately hedge the option, and
it is not immediately clear how to choose
the proportion of wealth to invest in the
underlying security at each trade. If we
abstract away from choosing the size of
the time steps between portfolio adjust-
ments, we are left with an interesting ma-
chine learning problem: How do we opti-
mally choose the proportion of wealth to
invest in the security, the so called delta,
∆, so that the value of our portfolio at the
next readjustment point in time is as close
as possible to the actual options price.

Data

We consider options data on the
S&P500 index from the period 2009-01-
02 09:30:01.052 to 2009-05-29 16:12:15.264.
Our data set contains tick by tick data of
every trade made in call and put options
on the index. Each observation contains
the following variables:

1. The time at which the trade took
place, t.

2. The type of the option (call or put).
3. The strike price of the option, K.
4. The maturity date of the option, T .
5. The S&P 500 index price, S.
6. The price of the option, P .
7. An implied volatility proxy, σ.

Since the numeraire in price data can be ar-
bitrarily chosen, there is some redundancy
in our data set. We choose to use the strike
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Figure 1: Left panel: A 3D scatter plot of the call-options data including a fitted mesh.
Right panel: A 3D scatter plot of the observed deltas including a fitted mesh.

price as the numeraire and thus henceforth
only look at ‘moneyness’, log(S/K), and
‘calliness’/‘puttiness’, P/K. Ignoring the
time aspect of the data we have plotted (the
dots)

P/K ∼ (log(S/K), (T − t))

in the left panel of Figure 1. Qualitatively
the data behaves very much as would be ex-
pected from the Black Scholes model. Close
to maturity, P/K as a function of S/K
resembles a hockey stick, whereas further
away from maturity this hockey stick has
been smoothed out. The data contains a
high degree of time variation. This can-
not be seen from left panel of Figure 1, but
a closer inspection of the data reveals that
the surface has a positive thickness. If mar-
ket conditions were stable arbitrage would
force the surface to have zero thickness.

By identifying options with the same
strike and maturity date, we extracted one-
day movements in option prices and in-
cluded that as an extra column in our data,
(dP ). Corresponding to these one day
movements, we also extracted the move-
ments in the S&P500 index, (dS). Ignoring
interest payments, the gain/loss of a strat-
egy that buys one option and sells ∆ units
of the index at time t and then reverses
these trades at time t+ 1 is

(P (t+ 1)−∆S(t+ 1))− (P (t)−∆S(t))
= dP (t)−∆dS(t)

In the right panel of Figure 1 we have plot-
ted dP/dS for those observations where
dS 6= 0. dP/dS corresponds to the value
of ∆ that would make the loss/gain of the
hedging portfolio equal to zero.

Methodology

We explore two ways to model the price
and the optimal hedge: parametrically and
non-parametrically. The goal of both mod-
els is first to be able to fit the surfaces like
the one displayed in Figure 1. For the price
surface we use a weighted squared error loss
function

P̂i 7→ wi(Pi − P̂i)2

where wi is a weight that will be specified
shortly. For the delta surface we use the
loss function

∆̂i 7→ wi(dPi − ∆̂dSi)2

= widS
2
i (dPi/dSi − ∆̂)2

i.e. a weighted version of the squared
loss/gain of the one-day hedge. Minimiz-
ing both loss functions results in an WLS
estimator of P̂ and ∆̂ respectively when
these are considered as being functions of
the covariates log-moneyness log(S/K) and
time to maturity T − t. Since neither sur-
face looks like a hyperplane we approxi-
mate them using fourth order tensor spline
by a B-spline basis expansion of the stan-
dard linear design matrix. Our parametric
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Figure 2: Left panel: Seven days trailing realized volatility calculated from the spot
S&P500 index price. Right panel: A plot of the cross-section at 0 < T − t < 50
of the data plotted in the right panel of Figure 1. The blue points are fitted
values.

model also includes a third covariate, trail-
ing realized volatility, (σ̃), a measure of the
observed market volatility during the last
seven days before the data point. Trail-
ing realized volatility, depicted in the left
panel of Figure 2, is added to the para-
metric model as a linear factor independent
of the tensor spline basis in log(S/K) and
T−t. Our calculations of realized volatility
follows, to some extent, the papers by An-
dersen et. al., 2003 and Barndorff-Nielsen
et. al. 2002.

The trailing realized volatility is included
in the parametric model to accomodate
the time variation inherent in the data.
That is, we use the trailing realized volatil-
ity as a proxy for the time variation in
the data, and hope that the observed call
prices/deltas can be described as noisy
observations of a function of the vector
(log(S/K), T − t, σ̃). In the parametric
model wi = 1.

Another way of incorporating time-
variation into our model, the non-
parametric approach, is to let the weights
(wi) account for the time variation. Our
approach is to let

wi = e−λ(t−ti)1{ti + δ > t > ti}

where ti is the time corresponding to ob-

servation i, and t is the time at which the
model is used for prediction. The non-
parametric model weighs data points ob-
served just prior to a point of prediction
more heavily than data points observed fur-
ther away in the past1.

Results

Examples of how our models fit to the data
are displayed in the panels of Figure 1. The
plotted grids represent the fitted spline sur-
faces.

It is most interesting to focus on the per-
formance of our delta estimates. In the
left panel of Figure 3, a histogram of the
distribution of gains/losses using predicted
deltas for the month of April 2009 is dis-
played. In the right panel, the correspond-
ing distribution of gains/losses using Black
Scholes deltas is displayed. The Black Sc-
holes deltas are simply calculated using the
formula

∆ = N

(
log(S/K) + (r + σ2/2)(T − t)

σ
√
T − t

)
where σ is the implied volatility and r is the
the risk-free interest rate. The Black Sc-
holes delta should result in a perfect hedge

1δ is a fixed cutoff that sets weights that would otherwise have been very small to zero. This mitigates
some of the computational burden involved in fitting the non-parametric model.
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Figure 3: Left panel: A histogram of the distribution of gains/losses using predicted
deltas from the non-parametric model with λ = 1/day for the month of April
2009. Right panel: The corresponding plot for Black Scholes deltas.

with continuous rebalancing of the hedg-
ing portfolio, but with discrete rebalanc-
ing the BS delta can be seen as a first
order approximation to an optimal delta.
Our deltas perform slightly better than the
Black-Scholes deltas. The average absolute
loss/gains are, respectively, $0.156112 on
the training data, $0.107760 on the test set
with Black Scholes deltas, and $0.082342
on the test set with the non-parametric
spline and λ = 1.

It seems interesting to investigate

whether the better performance of our
delta estimates is due to the fact that the
data was not generated from the Black Sc-
holes model. We generated a simulated
data set using the Black Scholes model,
using the strikes, the times and the ma-
turities from our original data. We then
applied the two ways of predicting deltas
to the simulated data. The result can be
seen in Figure 4. Again our model outper-
forms the Black-Scholes formula: The av-
erage absolute loss/gains are, respectively,

Figure 4: Left panel: A histogram of the distribution of gains/losses using predicted
deltas from the non-parametric model with λ = 1/day for the month of April
2009 on the simulated data. Right panel: The corresponding plot for Black
Scholes deltas.
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Figure 5: Left panel: Real data Right panel: Simulated data. The red dots are calculated
using Black-Scholes deltas. Blue dots are spline fitted deltas.

$0.138111 on the training data, $0.096381
on the test set with Black Scholes deltas,
and $0.078296 on the test set with the non-
parametric spline and λ = 1.

Figure 5 gives some intuition behind why
our method outperforms the Black-Scholes
delta. There is a convexity effect inher-
ent in the Black Scholes deltas that cre-
ates large gains when the underlying stock
moves a lot. Our method specifically tar-
gets these large movements, using dS2 as a
weight in the fitting, to try to minimize the
impact of these movements on the loss/gain
in the hedging portfolio. The point cloud
representing gains/losses using our models
thus curves less than the point cloud cor-
responding to the analytical Black-Scholes
deltas. We are aware that some trading
strategies exploit the convexity effect by

e.g. hedging straddles, but these kinds of
strategies requires insight/an opinon about
future volatility.

We do not present any results from the
parametric model, since it, in its current
form, performed worse than the Black Sc-
holes deltas.

Conclusion

We have presented a new way of estimating
good delta hedges using tensor splines. The
methods we developed seem to work well
on simulated as well as real data, and gen-
erally outperform the generic choice, the
analytical Black-Scholes delta hedging for-
mula. Related to our work are the papers
by Hutchinson et. al., 1994, Lai et. al.,
2004 and Bennell et. al., 2005.
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