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1. Introduction 

Laryngeal cancer is one of the most common types of head and neck cancer.  Depending on the stage of the 
tumor, chemotherapy, partial laryngectomy, or total laryngectomy may be required.  Accurate staging of the tumor 
is necessary to properly treat laryngeal cancer and avoid unnecessary procedures such as total laryngectomy, which 
can significantly degrade a patient’s quality of life [1]. 

Accurate staging of laryngeal cancer can be clinically challenging due to the difficulty of detecting the extent 
of laryngeal cartilage invasion by the tumor.  To resolve this limitation, high-resolution Magnetic Resonance 
Imaging (MRI) of the larynx [2] has been investigated and has led to the availability of high-resolution 3D MRI 
datasets with multiple contrasts.  These datasets are well-suited for automatic image segmentation of the larynx (i.e., 
classification of physiological structures and tissues).  While fully automated segmentation of the laryngeal 
cartilages remains unexplored, a multi-contrast and multi-dimensional approach has proven useful for segmenting 
articular cartilage [3]. 

The purpose of this project was to investigate the application of 
learning algorithms to automatically segment high-resolution MR images 
of the larynx, which can potentially increase the accuracy of laryngeal 
cancer staging. 

 
2. Methods 

In this project, we applied learning algorithms to implement 
automatic segmentation of MR images of the larynx.  Among the various 
tissues in the larynx, our focus was on the laryngeal cartilage.  Using the 
different T1 and T2 relaxation times of cartilage versus surrounding 
tissues, we selected appropriate MR sequences that produced images with 
different contrast levels [4].  Each pixel in the resulting dataset was 
represented as a vector of different intensity levels.  Figure 1 illustrates 
the different contrast levels produced by the four different MR sequences 
that were used to image the larynx of healthy volunteers.  Both a 
supervised learning algorithm (support vector machine, SVM) and an 
unsupervised learning algorithm (k-means) were investigated.  For both 
algorithms, the vector-valued pixel intensities were used as features.  For 
the SVM, a subset of larynx images was manually segmented for training 
and quantitative assessment of testing accuracy.  The segmentation 
classes consisted of: 1) ossified laryngeal cartilage and fat, 2) muscle, and 
3) trachea and background pixels.  These regions are denoted with arrows 
in Fig. 2. 

 
2.1. Data Acquisition 

A larynx-dedicated three-channel array coil [2] was used to scan 
two healthy volunteers on a GE 1.5 T MRI system.  Four 3D MR 
sequences, proton-density-weighted spin-echo (PD), spin-echo (SE), fast 
spin-echo IDEAL (FSE-IDEAL), and fast spin-echo XL (FSE-XL), were 
run to acquire four sets of images.  These sequences were chosen based 
on their ability to provide different contrast among cartilage, muscle, and 
other tissues of interest.  
 
2.2. Procedure 

A series of Matlab routines was implemented to perform various 
preprocessing steps to align images (registration), correct for the MR coil 
sensitivity pattern (intensity correction), and structure the data into a 

 
Figure 1. Images from a single slice of 
a larynx dataset. Four MR sequences 
were chosen to yield different levels of 
contrast: PD (a), SE (b), FSE-IDEAL 
(c), and FSE-XL (d). 
 

 
Figure 2. MR image of the larynx 
showing laryngeal cartilage (a), 
subcutaneous fat (b), muscle (c), and 
trachea / background (d). 
 



format suitable for SVM and k-means.  For the SVM, we used the LibSVM package [5] to implement a multi-class 
SVM model.  For k-means, we directly implemented the algorithm in Matlab.  We tested the performance of both 
algorithms on two larynx MR datasets.  A detailed description of the procedure is given below. 

 
2.2.1. Preprocessing 

 
2.2.1.1. Registration 

Image registration was used for spatial alignment of images to correct for subject motion that may have 
occurred between scan sequences.  Registration was performed automatically using mrVista, a Matlab interface for 
analyzing functional and anatomical data [6]. 

 
2.2.1.2. Intensity Correction 

Since a larynx-dedicated array was used to acquire the MR datasets, image intensity varied significantly 
with spatial location relative to the array.  Intensity correction was performed to account for the coil sensitivity 
profile that made regions near the array undesirably bright [7].  We implemented an intensity correction method that 
fit a low-order polynomial to the proton-density images, which represent the coil sensitivity [8].  Amplitude 
thresholding was used to mask background and low-SNR regions of the image, and polynomial coefficients were 
computed by solving the following convex optimization problem 

 

€ 

min. W (Xa − y) 2
2

subject to Xa > 0
     (1) 

 
where W is the diagonal matrix of binary mask weights, X is the regressor matrix containing powers and cross terms 
of x and y coordinates up to the desired fitting order, y is the vector of original image values, and a is the vector of 
polynomial coefficients. 

 
2.2.2. Classification 

 
2.2.2.1. SVM 

Manual image segmentation was done 
using 3DSlicer, an Insight Segmentation and 
Registration Toolkit (ITK) based software [9].  
Pixels were manually labeled as one of three 
classes: 

1) Ossified laryngeal cartilage and fat 
2) Muscle 
3) Trachea and background 

For training datasets, only regions that could be 
labeled with high confidence were used.  For 
testing datasets, all pixels were labeled, as the 
manual segmentation was used for quantitative 
assessment of testing accuracy.  Subcutaneous fat 
and ossified laryngeal cartilage (fatty marrow) 
were given the same label due to their similar 
contrasts in all images, making them difficult to 
distinguish in manual segmentation.  Likewise, the 
trachea and background were given the same label 
since these regions do not produce an MR signal. 

In each dataset, the MR slices covering the 
laryngeal cartilages were chosen for processing.  
Datasets from two different subjects were used for 
SVM training and testing.  LibSVM [5] was used 
to implement and solve the multi-class SVM.  A 
Gaussian kernel was selected for the SVM model. 

 

 
Figure 3. Intensity correction on one slice of the proton-
density-weighted dataset: original (a), corrected (b), mask 
(c), and resulting third-order polynomial fit (d). 



The SVM performance was assessed by comparing the SVM 
classification with the manually segmented test data.  An accuracy score 
was computed as the ratio of correctly classified pixels to total pixels in 
the region of interest. 

 
2.2.2.2. K-means 

The k-means clustering algorithm was carried out on the same 
datasets used for SVM testing.  The algorithm was run with k=3 clusters, 
which allowed direct comparison with the manually segmented testing 
images and SVM results.  The algorithm was repeated four times, and the 
solution with the lowest objective value was used to avoid bad local 
minima. 
 
3. Results 

 
3.1. Intensity Correction 

Figure 3 shows one slice from the testing dataset before and after 
intensity correction.  The third-order polynomial fit to the original image 
resulted in good intensity correction in a computation time of less than 30 
seconds on a 2.0 GHz Intel Core 2 Duo processor.  Intensity correction 
significantly improved the performance of both SVM and k-means 
classification.  Figure 4 shows an example of the performance of SVM 
and k-means with and without intensity correction.  In both cases, the 
quality of the resulting segmentation was greatly improved by intensity 
correction.  Specifically, intensity correction improved the overall 
accuracy of the SVM by 5%, the percentage of correctly labeled laryngeal 
cartilage pixels by 9%, and the percentage of correctly labeled muscle 
pixels by 5%.  Confusion matrices for the SVM results are given in 
Tables 1 and 2. 
 
3.2. SVM 

Figure 5 shows the scatter plot of all pixels in the testing dataset, 
with three of the four contrast levels plotted on the x, y, and z axes.  The 
label of each pixel was determined by manual segmentation.  Each 
species forms a well-localized cluster, suggesting that automatic 
segmentation will yield good accuracy.  Figure 6 shows three slices from 
the testing dataset.  The top row shows one of the four contrasts, the 
second row shows the manual segmentation, and the third row shows the 
SVM classification.  For the SVM, training and testing datasets were 
acquired from larynx scans of two different subjects.  The SVM achieved 
an overall accuracy of 93%.  Since there were a disproportionate number 
of background and muscle pixels compared to cartilage pixels, the 
confusion matrix was computed to give a more detailed performance 
metric.  The confusion matrix is given in Table 3.  For comparison with 
multi-subject training and testing, an SVM was trained and tested on 
different slices from the same subject.  The overall accuracy was 94%, 
and the confusion matrix is given in Table 4.  As expected, the accuracy 
of single-subject training and testing was better than that of multi-subject 
training and testing.  The largest change in accuracy came from the 
cartilage pixels, with an increase of 8% (from 69% to 77%).  Although 
multi-subject training and testing had a lower accuracy than single-
subject training and testing, the results were quite promising considering 
the physiological differences among subjects, such as the degree of 
ossification of laryngeal cartilage, which significantly affects the intensity 
level of the signal.  These differences can potentially be accounted for 

 
Figure 4. Results of SVM (top row) 
and k-means (bottom row) on an 
uncorrected image (left column) and 
an intensity-corrected image (right 
column). Due to the uneven coil 
sensitivity profile, image intensity 
varies with position. Intensity 
correction significantly improves 
segmentation results. 

Table 1 – Confusion Matrix 
Uncorrected Image 

   Mscl. Cart. Bkgd. 
Mscl. 0.83 0.06 0.11 
Cart. 0.25 0.75 0.00 
Bkgd. 0.03 0.00 0.97 

 
Table 2 – Confusion Matrix 
Intensity Corrected Image 

   Mscl. Cart. Bkgd. 
Mscl. 0.88 0.08 0.04 
Cart. 0.16 0.84 0.00 
Bkgd. 0.01 0.00 0.99 

 
Table 3 – Confusion Matrix 

Multi-Subject Train/Test 
 Mscl. Cart. Bkgd. 

Mscl. 0.89 0.07 0.04 
Cart. 0.29 0.69 0.02 
Bkgd. 0.01 0.00 0.99 

 
Table 4 – Confusion Matrix 

Single-Subject Train/Test 
 Mscl. Cart. Bkgd. 

Mscl. 0.90 0.08 0.02 
Cart. 0.23 0.77 0.00 
Bkgd. 0.01 0.00 0.99 

 



using additional preprocessing methods such as histogram 
equalization. 

A Gaussian kernel with parameter g=0.25 (σ2=2) 
was used in the SVM, which is the default kernel used by 
LibSVM.  We also tested other built-in kernels supported 
by LibSVM, including linear, polynomial, and sigmoid 
kernels.  There were no significant differences between the 
Gaussian and linear kernels, and the overall accuracy, 
confusion matrices, and SVM segmentations were very 
similar for these kernels.  For the polynomial and sigmoid 
kernels, the performance was similar or worse than that of 
the Gaussian kernel among the range of parameters we 
tested. 

One drawback of using a supervised learning 
algorithm for this application is that the manual 
segmentation of training data can be very time consuming.  
Furthermore, manual segmentation is prone to errors.  For 
example, the thin layer of subcutaneous fat can be 
especially challenging to manually segment due to its 
irregular thickness and non-contiguous structure.  Because 
of these challenges, an unsupervised learning algorithm (k-
means) was investigated since it requires no manual 
segmentation of images.   

 
3.3. K-means 

The results of k-means are shown in the last row of 
Figure 6.  K-means produced comparable segmentation 
results as the SVM without requiring manual segmentation.  
Since k-means assigns class labels randomly, we manually 
assigned each of the three output classifications to the 
appropriate class (laryngeal cartilage/fat, muscle, or 
trachea/background).  By defining each output class in this 
way and using the manually segmented testing images as 
the gold standard for accuracy, we can compute an 
accuracy score and confusion matrix for k-means, allowing 
us to quantitatively compare its performance to the SVM.  
The overall accuracy of k-means was 94% with respect to 
the manually segmented testing images.  The confusion 
matrix is shown in Table 5.  The k-means confusion matrix 
was almost identical to that of the single-subject SVM (i.e., 
training and testing data from one subject) shown in Table 
4.  When compared to the confusion matrix for the multi-
subject SVM (Table 3), the accuracy of the laryngeal 
cartilage classification improved by 8%, from 69% for the 
SVM to 77% for k-means. 

 
3.4. MR Sequence Selection 

Each MR sequence we acquired had a scan time 
ranging from two to ten minutes.  Due to practical limits on 
the total duration of the MR exam as well as the increased 
potential for motion (both during and between scans) from 
long scan times, we would like to use the fewest number of 
contrasts that still yields favorable accuracy, since this 
requires the least amount of scan time.  We investigated the 
effects of using only a subset of the four contrasts.  Since 
the proton density sequence was required for intensity 

 
Figure 5. Scatter plot showing contrast levels of the 
manually segmented testing image for contrast 1 (PD), 
contrast 2 (SE), and contrast 3 (FSE-IDEAL). 
Cartilage and fat (yellow), muscle (red), and trachea 
and background (black) form well-localized clusters 
suggesting that automatic segmentation will yield 
good accuracy. 

 
Figure 6. SVM and k-means testing results. Proton 
density MR images (row 1), desired labeling (row 2), 
SVM labeling (row 3), and k-means labeling (row 4) 
for three test slices from a larynx dataset. Results of 
SVM labeling demonstrate classification of cartilage 
and fat (yellow), muscle (red), and trachea and 
background (white) with 93% accuracy with respect to 
manual segmentation. K-means results in comparable 
segmentation results without requiring tedious manual 
segmentation. 

Table 5 – Confusion Matrix 
K-means 

 Mscl. Cart. Bkgd. 
Mscl. 0.91 0.07 0.02 
Cart. 0.22 0.77 0.01 
Bkgd. 0.01 0.00 0.99 

 



correction, this resulted in three possible contrast pairs 
when only two contrasts were used for SVM training and 
testing.  Among those pairs, we found that the 
combination of PD and SE sequences resulted in the 
most accurate segmentation. Figure 7 shows the 
segmentation results when each pair is used for SVM 
training and testing.  Qualitative assessment of the 
segmented images shows that the PD and SE sequence 
pair results in the best segmentation of laryngeal 
cartilage.  Furthermore, quantitative comparison of 
confusion matrices shows that the accuracy of laryngeal 
cartilage classification is highest for this pair of 
sequences (79%, 64%, and 56% for PD+SE, PD+FSE-
IDEAL, and PD+FSE-XL, respectively). 
 
4. Conclusions 

We have successfully implemented SVM and k-
means algorithms to segment the cartilages from MR 
images of the larynx.  An intensity correction technique 
was implemented, resulting in significant improvements 
in the performance of segmentation.  SVM classification 
using multi-subject training and testing achieved an overall accuracy of 93%, muscle classification accuracy of 89%, 
laryngeal cartilage classification accuracy of 69%, and trachea and background accuracy of 99% with respect to 
manual segmentation.  Unsupervised k-means produced comparable segmentation results without the need for 
manual segmentation, which can be tedious and error-prone.   

For the SVM, future work includes the investigation of specialized kernels derived from MR physics, which 
can lead to better classification of the different species based on MR parameters such as T1 and T2 relaxation times.  
For k-means, future work includes comparison with other unsupervised learning algorithms, such as Expectation-
Maximization (EM).  Additional work includes the extension of this project to reconstruct an entire 3D larynx 
dataset, which can potentially increase the accuracy of laryngeal cancer staging. 
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Figure 7. Comparison of SVM performance using 
only two contrasts for SVM training and testing. 
Results demonstrate improved classification when 
the PD and SE sequences are used (top row). 


