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Introduction  
The prediction of the function of a novel 
gene remains to be a challenging 
problem. Given a piece of coding 
sequence, one can deduce its function by 
finding homologous genes using 
sequence or protein structural alignment. 
One can also perform gene expression 
measurements or gene knockout 
experiments to determine the function of 
a gene. However, a gene may not have 
homology with any known gene and 
experiments can be expensive. It would 
therefore be beneficial if the function of 
a gene can be predicted from the 
characteristics of its coding sequence. 
One such characteristics is synonymous 
codon usage.  
 
Proteins are strings of amino acids and 
their sequences are translated from 
nucleotide sequences using the genetic 
code, which is a set of trinucleotide 
sequences. Each trinucleotide is termed a 
codon. Proteins are constructed from 20 
different amino acids, yet there are 43 = 
64 different codons. The genetic code is 
therefore redundant - most amino acids 
are encoded by more than one codon 
(Table 1). Trinucleotide sequences 
coding for the same amino acids are 
referred to as synonymous codons. The 
usage of synonymous codons is not 
random – some codons are preferred 
over the others for a given amino acid 
and such perference varies among 
species as well as among genes within a 
species.  
 
It has been shown that for a number of 
organisms such as yeast, bacteria, plants, 

insect, and mammals, genes can be 
clustered into groups that have different 
expression patterns and functions based 
on codon usage (1). In this project, I 
focused on baker's yeast 
(Saccharomyces cerevisiae), which is a 
unicellular eukaryote that has been 
studied extensively as a model organism. 
Sharp et. Al demonstrated that yeast 
genes can be seggregated into two main 
clusters with different expression levels 
based on synonymous codon usage (2). 
Najafabadi et. Al showed that co-
expressed genes in yeast have similar 
synonymous codon usage and that codon 
usage can improve the prediction of 
protein-protein interaction in organisms 
including yeast (3,4). Here, I would like 
to build a classifier to predict the 
function of a gene, using yeast as a 
model.  
   
Table 1. The Genetic Code.  
Amino Acid  Codons  
Alanine  GCT,GCC,GCA,GCG  
Arginine  CGT,CGC,CGA,CGG,AGA,AGG  
Asparagine  AAT,AAC 
Aspartic acid  GAT,GAC  
Cysteine  TGT,TGC  
Glutamic acid  GAA,GAG  
Glutamine  CAA,CAG  
Glycine  GGT,GGC,GGA,GGG  
Histidine  CAT,CAC  
Isoleucine  ATT,ATC,ATA  
Leucine  CTT,CTC,CTA,CTG,TTA,TTG  
Lysine  AAA,AAG  
Methionine  ATG  
Phenylalanine  TTT,TTC  
Proline  CCT,CCC,CCA,CCG  
Serine  AGT,AGC,TCT,TCC,TCA,TCG  
Threonine  ACT,ACC,ACA,ACG  
Tryptophan  TGG  
Tyrosine  TAT,TAC  
Valine  GTT,GTC,GTA,GTG  
Stop Codon  TAA,TAG,TGA  
   
Methods  
Data  
Yeast genes that participated in various 
molecular pathways were retrieved from 



the KEGG (Kyoto Encyclopedia of 
Genes and Genomes) Pathway database. 
The categories chosen for this study 
included those involved in metabolism, 
DNA replication and transcription, 
translation, and cellular processes. 
Details of the chosen pathways are 
presented in Table 2. Coding sequences 
of the genes were retrieved from the 
Saccharomyces Genome Database 
(SGB). Duplicated copies of genes 
within the same category were removed. 
Genes that were found in more than one 
categories were ignored. Only genes 
with more than 100 codons were 
considered. The final data set had 891 
genes. 
 
Feature Space  
There are 64 different codons. However, 
since methionine and tryptophan have 
only 1 corresponding codon, these two 
codons do not contribute to the 
measurement of codon usage and are 
removed from the analysis. Also,  stop 
codons that signal the termination of 
transcription are also removed. Each 
gene is therefore represented by a vector 
containing 59 elements, each element 
corresponds to the relative synonymous 
codon usage frequency (RSCU) (fij) (2),    
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where xij is the number of ocurrences of 
synonymous codon j of amino acid i and 
ni is the number of synonymous codons 
encoding for amino acid i. This measure 
can be interpreted as the observed 
number of occurrence of codon i versus 
the expected number of occurrence of 
codon i given an amino acid j assuming 
uniform distribution. It has the 
advantage of removing the effect of 

amino acid composition on the codon 
usage profile of  a gene. Since a gene 
does not necessarily carry all 20 amino 
acids, a pseudo-count (+1) was added for 
every codon.  
 
Data Analysis  
Calculation of codon usage and building 
of learning algorithms were done in 
Matlab.  
  
Supervised Learning Algorithms  
1. Softmax Regression  
Softmax regression is an example of 
Generalized Linear Model applied to 
multinomial data. The model takes the 
feature vector of each gene with its label 
in the training set and output the 
probabilities of a test sample being in the 
different classes. The parameters were 
found by maximizing the log-likelihood 
with batch gradient ascent. The class 
with the higest probability was chosen to 
be the predicted class.  
 
2. Support vector machines (SVM) 
Ma et. Al (5) demonstrated the use of 
SVM for the classification of human 
leukocyte antigens using codon usage. 
SVMs  are inherently a two-class model 
but they can be extended to multiple 
classes. Two common ways are the one-
versus-all method, where k SVM models 
are built, one for each of the k classes. A 
test sample is assigned to the class that 
classifies it with the largest margin. The 
second approach is the one-versus-one 
model, where k(k-1)/2 models are built. 
Each model is built for a pair of the 
classes. The label of a test sample will 
be the class that are chosen by most 
models. Here, I used the later approach.  
 
Evaluation of Learning Algorithms  
Ten-fold cross validation was used to 
evaluate the performance of the 



classifiers. Briefly, the data set was 
partitioned into 10 subsets of 
approximately equal size, each subset 
containing equal proportion of genes 
from each category. In each validation, 
nine subsets were used for training and 

the remaining subset was used for 
testing. The testing error was calculated 
as the average of the testing errors from 
all ten validations.  
 

 
Table 2. Yeast genes participating in the listed pathways were included in the analyses. 
Category Metabolism DNA Replication, 

Transcription 
Translation Cellular Processes 

Included Pathways Glycolysis 
Starch metabolism 
Galactose matabolism 
Citrate cycle 
Oxidative phosphorylation 
Pyruvate metabolism 
Steroid biosynthesis 
Fatty acid metabolism 
Fatty acid biosynthesis 
Valine biosynthesis 
Lysine biosynthesis 
Alanine metabolism 
Tyrosine metabolism 
Glycine metabolism 
Lysine degradation 
Phenylalanine metabolism 
Tryptophan metabolism 
Histidine metabolism 
Cysteine metabolism 
Valine degradation 
P450 cytochromes 
Pyrimidne metabolism 
Purine metabolism 
Sulphur metabolism 
Nitrogen metabolism 

DNA replication 
Base excision repair 
Nucleotide excision repiar 
Mismatch repair 
Ubiquitin mediated 
proteolysis 
RNA degradation 
RNA polymerase 
Basal Transcription factors 
Spliceosome 

Ribosomes Cell cycle 
Meiosis 
Endocytosis 
Autophagy 

Total number of genes 386 177 123 204 

 
Results 
Principal Component Analysis 
The data set of 891 yeast genes, each 
represented by a feature vector of 59 
elements, was subject to principal 
component analysis. The first two principal 
components explained 37% and 11 % of the 
total variance, repsectively. Figure 1 shows 
the representation of each gene in the space 
spanned by the first two princiapl 
components. It was obvious from Figure 1 
that different functional categories of genes 
occupied different spaces defined by the first 
two components, except for the categories of 
DNA replication/transcription and cellular 
processes (Figure 1, right panels). These two 
groups were thus grouped together for the 
building of gene function classifiers. 
Interestingly, ten of the genes partitcipating 
in the oxidative phosphorylation pathway 
were located in unique location in the 

principal component space (Figure 1, bottom 
panel). Further exmination of the data set 
revealed that they were genes in the 
mitochondria, a DNA continaing organelle 
that participates in energy metabolism in 
eukaryotes and is believed to be derived 
from endosymbiotic prokaryotes. It was 
therefore not surprising that mitochondrial 
genes have synonymous codon usage very 
different from nuclear genes. None of the 
other pathways contained mitochondrial 
genes. These ten genes were removed from 
the data set for training. The final data set 
thus consisted of 881 nuclear genes. 
 
Figure 2 is a plot of the contribution of each 
codon to the first two principal components. 
One interesting observation was that codons 
ending with A or T contributed positively to 
the second principal component while those 
ending with G or C contributed negatively.



 

 
Figure 1. Principal component analysis of synonymous codon usage of yeast genes. 

 

 
Figure 2. Contribution of each codon to the first two principal components. 

 
Supervised Learning 
Classifiers were built for three 
classes/categories using 881 nuclear genes. 
Category 1 corresponded to genes involved in 
metabolism; category 2 corresponded to genes 
involved in DNA replication, transcription, and 
cellular processes; category 3 corresponded to 
ribosomes. 
 
Softmax regression 
Using batch gradient descent with a learning 
rate of 0.0001, yeast genes were classified into 
3 categories based on their codon usage. Table 

3 shows the confusion matrix summed over all 
ten validations (i.e. each cross validation 
generated a confusion matrix and Table 3 is the 
sum of all 10 confusion matrices, such that 
each gene was classified once). The average 
test error (percentage of genes misclassified) 
was 21.6% , which was close to the training 
error. Most of the genes in category 1 
(metabolism) that were misclassified fell into 
category 2 (DNA replication, translation, 
cellular processes). The specificity of category 
2 (number of true category 2 genes / number of 
genes classified into category 2) was quite low, 



 

~62%. This was not surprising, since some of 
the category 1 genes fell into similar space 
defined by the first two principal components 
as category 2 (Figure 1). 
 
Table 3. Confusion matrix of softmax regression.  
  predicted  

  1 2 3 

True 
Positive 

proportion 
 1 270 88 18 0.72 

target 2 32 145 0 0.82 
 3 24 1 98 0.80 

 
True Positive 
proportion 0.83 0.62 0.84  

 
Average Train Error (%) 19.46 
Average Test Error (%) 21.59 

 
Support Vector Machines 
Three regularized SVMs were built, one for 
each category pair (categories 1 vs. 2, 2 vs. 3, 1 
vs. 3). A gene was classified into category i if 
both SVMs involving category i gave the same 
prediction i. If the prediction of any two SVMs 
disagreed, no prediction was made for the gene 
and such event was termed 'uninformative'. 
Different kernels and values for C, the 
parameter that controls the weighting of the 
slack variables, were experimented. Tables 4 
and 5 list the training error, test error, and 
uninformative rate of the multi-class SVM 
using polynomial (linear, quadratic, and cubic) 
and Gaussian kernels, respectively, after ten-
fold cross-validation. Decreasing C reduced 
overfitting, as seen from the increase in training 
error. Quadratic and cubic kernels tended to 
overfit the data, as observed from the zero 
training error and relatively high test error 
rates. Linear kernels performed better than 
cubic and quadratic kernels. The best error rate 
of the multi-class SVM was 18.07%, which 
was obtained using a Gaussian kernel. Such 
eror rate was better than that obtained from 
softmax regression. Table 6 is the confusion 
matrix with the best error rate.  
Table 6. Confusion matrix of the best multi-class SVM 
model.  

Gaussian Kernel 
(Sigma=5, C=1.5) 

 predicted 

  1 2 3 
True Positive 
proportion 

 1 281 84 11 0.75 
target 2 56 325 0 0.85 

 3 6 2 115 0.93 

 
True Positive 
proportion 0.82 0.79 0.91  

   Uninformative rate=0% 
   Average test error=18.07% 

Table 4. Errors of the multi-class SVM using polynomial 
kernels under different parameters.  
Polynomial Kernel     

Poly-
nomial 
Degree C 

Average Training 
Error (%) 

Average 
Test 
Error 
(%) 

Average 
Uninformative 

Rate (%) 

  

1 
vs. 
2 

2 
vs. 
3 

1 
vs. 
3   

1 0.002 18.69 3.40 8.46 22.27 0.00 
 0.005 17.69 3.11 6.90 21.03 0.57 
 0.01 17.23 2.98 5.95 20.68 0.57 
 0.05 16.70 1.87 6.12 20.92 0.57 
 1 16.63 1.63 5.88 21.20 0.80 

2 0.002 2.95 0.00 0.96 26.01 1.70 
 0.005 1.14 0.00 0.22 28.34 1.82 
 0.01 0.32 0.00 0.00 30.91 1.48 
 0.05 0.00 0.00 0.00 31.34 1.36 
 1 0.00 0.00 0.00 31.34 1.36 

3 0.002 0.00 0.00 0.00 23.50 0.91 
 0.005 0.00 0.00 0.00 23.50 0.91 
 0.01 0.00 0.00 0.00 23.50 0.91 
 0.05 0.00 0.00 0.00 23.50 0.91 
 1 0.00 0.00 0.00 23.50 0.91 

 
Table 5. Errors of the multi-class SVM using Gaussian 
kernels under different parameters. The best error rate is 
highlighted in bold. 

Gaussian Kernel     

σ C 
Average Training Error 

(%) 

Average 
Test 
Error 
(%) 

Average 
Uninformative 

Rate (%) 

  

1 
vs. 
2 

2 
vs. 
3 

1 
vs. 
3   

5 0.1 17.51 3.02 8.44 22.95 0.00 
 0.5 12.95 1.15 3.74 19.32 0.00 
 1 8.81 0.53 2.07 18.52 0.00 
 1.5 6.16 0.33 1.40 18.07 0.00 
 2 4.11 0.07 0.96 18.64 0.00 

8 0.1 19.67 3.20 9.78 23.18 0.00 
 0.5 16.06 2.14 6.01 20.45 0.00 
 1 14.59 1.21 3.70 18.98 0.00 
 1.5 13.44 0.86 3.16 18.86 0.00 
 2 12.39 0.79 3.01 18.41 0.00 

10 0.1 20.37 3.44 10.47 23.64 0.00 
 0.5 17.00 2.93 6.66 20.45 0.00 
 1 15.97 2.07 4.88 19.45 0.11 
 1.5 15.07 1.32 3.74 18.98 0.00 
 2 14.47 1.01 3.27 19.20 0.00 

 
Conclusion 
The function of yeast genes could be predicted 
fairly well based solely on the coding 
sequences. In this study, one-versus-one 
support vector machine with a Gaussian kernel 
performed better than softmax regression. It 
would be interesting to investigate whether the 
use of codon usage for gene prediction could be 
extended to other organisms including higher 
level eukaryotes. 
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