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We developed a reinforcement learning MDP agent and a genetic programming learning agent to play the 

game Super Mario Bros. Our results compare favorably with the current state of the art agents for this 

game. In particular, our genetic programming agent would be the top performing learning AI agent in the 

2009 AI Mario competition. 

Introduction 

Electronic games are a pervasive part of the lives of many people around the world. In recent years, an 

increasing number of scientists and institutions have been devoting their time to the study of artificial 

intelligence in computer games. 

One of the major factors for the fun and re-playability of computer games is a good artificial intelligence 

agent. Developing competent AI agents by hand is a difficult and time-consuming task. Although AI has 

been applied successfully in some games, most games do not contain true AI, as they utilize pre-defined 

scripts to simulate “artificial intelligence.” 

We tackle the problem of developing an AI agent to play games. In particular, we consider the 2D 

side-scrolling platform game Super Mario Bros. The particular implementation that we use is an open 

source Java implementation from an annual international AI Mario competition (1). 

Description 

The agent’s objective is defined to be the progress through as many levels in the game as possible without 

dying. This is measured by a Mario game score. Lesser objectives include collecting coins and defeating 

enemies.  

In our specific Mario platform, 24 times per second, the agent is given a 22*22 observation window of the 

discrete cells around the agent. Note that in the game physics engine, object coordinates have much finer 

resolution. Therefore, for object coordinates given to the agent, discretization is necessary. 

In each of these 484 squares, the agent may observe one of the following: 

• Bricks – Stationary obstacle. May release coins or power-ups if hit by large Mario. 

• Borders – Stationary obstacle. Mario cannot pass through borders. 

• Hills – Stationary obstacle. Mario can jump up through a hill, but cannot pass down. 

• Flower pots (pipes) – Stationary obstacle. Enemy flowers appear periodically from pipes. 

• Cannons (towers) – Stationary obstacle. Cannons periodically shoot out flying bullets. 

• Enemies – Goombas, koopas, and their winged and spiky varieties. 

 

In each discrete square, there are 6 terrain cell types and 4 enemy types. The state space of this problem 

is 10
484

. This space is of a size such that complete search is computationally intractable.  



Approach 

Currently, the most successful agents for this Mario game are agents which reproduce the game physics 

and perform A* search through the 22*22 window. These approaches are domain-specific, utilize external 

information, and are not extendable to other games. 

In choosing our approach, we considered multiple online and reinforcement learning techniques such as 

online SVMs, online decision trees, MDPs, POMDPs and genetic programming. We ultimately chose to 

implement a reinforcement learning MDP agent and a genetic programming agent which seemed to be 

the learning methods most directly applicable to our problem. MDPs provide a mathematical framework 

for modeling decision-making in situations where outcomes are partly random and partly under the 

control of a decision maker. Genetic programming is an evolutionary algorithm-based 

methodology inspired by biological evolution to find computer programs that perform a user-defined 

task. 

Method 1: MDP 

Features 

To reduce the state space to a size computationally efficient to train, while also not giving up too much 

information, we decompose Mario’s observation window into the following features: 

• Mario Status: Can Mario jump? Is Mario on the ground? Can Mario throw a fireball? 

• Two cells directly ahead and behind of Mario  

• Are there gaps in front of Mario? 

• Distance of enemies in front of Mario 

We also simplify cell types into the following four: 

1) Passable cell 2) Obstacles (bricks, borders, flower pots, cannons) 3) Half-borders 4) Enemies 

Our total feature space size is 3*2
19

. Keep in mind that our features are chosen to be expressive as 

possible, while keeping the feature space size to be within the training abilities of our limited 

computational resources. 

Actions 

It is difficult to model the objective of moving forward efficiently using an MDP. Therefore, we restrict 

Mario's actions to always move to the right. Mario’s action space contains these four actions: 1) Right, 2) 

Right Fast, 3) Right Jump, 4) Right Fast Jump. 

Reward Function 

In our MDP setup, we use a reward function of the form ���, ��. A small penalty is given for jumping to 

discourage random jumping. A small reward is given for being away from enemies and gaps. A large 

penalty is given for touching the enemy. 



Transition Probability Function 

Though this game is mostly deterministic, due to limited visibility (22x22 window) and our feature 

mapping, the feature space state transition is not deterministic. Therefore, we must learn empirical 

transition probabilities to estimate �	
����. 

Value Function 

In our training routine, we utilize a form of asynchronous value iteration to converge toward the optimal 

value function of the Bellman equation. The update equation used during training is the following: 

���� ≔ max
 ����, �� + � � �	
���������
	�

� 

Note that the states we consider are now feature states/vectors in our feature space, not the original 

game states. To train our value function, we run the MDP agent on many randomly generated levels and 

collect statistics about �	
����, while updating ���� through the Bellman equation. 

Action Selection 

���� = argmax



����, �� + � � �	
���������
	�

� 

After training, our MDP agent uses the computed value function V to define a policy π. During game play, 

when the agent is presented with a game state, the state is mapped into a feature vector, which is then 

given to the policy � to determine the next action to take. 

Method 2: Genetic Programming 

Summary 

Objective Find program to control Mario's jump action 

Program Tree-based, Strong-typed 

Value Type Boolean, Integer, Float 

Variable Observation variable from Mario game (Mario status has Boolean type, Cell type 

has Integer type, Enemy position has Float type) 

Function Set +, −, ×, ÷ (protected division), ==, > (on integer and float), Type Casting between 

Integer and Float, Boolean AND, OR, NOT, If statement 

Terminal Set Variable, and Random constants 

Fitness Multi-objective: Mario game score, number of actions 

Selection Sort fitness according to Pareto dominance 

Initial Pop Random initialization, depth < 5, 50% of terminals are constants 



Crossover Typed one point crossover 

Parameters Population size 1000, 50% sub-tree crossover, 25% reproduction, 25% mutation. 

no tree size limits 

Termination 16 Generations 

Program 

We choose to implement a strong-typed tree-based GP. Strong type may be beneficial as each type has 

corresponding semantics. By allowing only type-correct programs, we can limit the program space to 

programs that at least make semantic sense. All crossover and mutation operations preserve the 

type-correctness of the tree. To simplify design, we also restrict the program to control Mario's jump 

action only, while by default Mario will always be moving to the right. 

Fitness and Selection 

The fitness measure is multi-objective. It aims to maximize Mario game score while minimizing the 

number of actions taken. Individuals’ performances are sorted according to Pareto dominance. 

Genetic Programming Results 

We ran 30 batches of experiments. The best individual from the genetic programming is shown below: 

 

Overall Results 

After significant amount of training, we evaluated our agents using the same environment specified in the 

Mario AI Competition 2009 @ CIG and compared our agents against the published results (1): 

Rank Name Algorithm Score     Levels Time left Total 

Kills 

Mode 



1 Robin Baumgarten A* 46564.8 40 4878 373 76 

... 

6 Spencer 

Schumann 

RB,H 17010.5 8 6593 99 24 

 Our GP Agent GP 13913.42 8 5458 58 32 

7 Matthew Erickson Ev, GP 12676.3 7 6017 80 37 

... 

10 Mario Pérez SM, Lrs 12060.2 4 4497 170 23 

 Our MDP Agent MDP 11104.23 5 6339 97 36 

11 Alexandru Paler NN, A* 7358.9 3 4401 69 43 

Our GP agent would be the top performing machine learning agent in the competition, as the top 6 

entries are all either A* search or rule-based algorithms which reproduce game physics. Our code is 

available for demo upon request. 

Discussion 

Comparing our MDP agent to better performing agents, our agent differs in the fact it sometimes tries to 

kill the enemy with a fireball, rather than evade the enemy. If the fireball attack fails, Mario often will not 

have enough time to avoid the enemy. This suboptimal behavior comes from the fact that our MDP agent 

only has a coarse observation about enemies, so if it detects an enemy in the distance, but is not sure 

about relative position, it will continue moving forward and throw a fireball to try to remove the enemy. 

Ideal behavior would be to move toward the enemy and jump over them when near. 

Our GP agent only controls whether Mario jumps or not. Its general behavior is to evade enemies at all 

times. Though it appears that the GP agent works well, the evolved logic is difficult to decipher. This is a 

common problem with solutions obtained by genetic programming. 

The AI Mario Competition is planned to be at several AI and electronic game conferences in 2010. There 

may be a new “online learning” track of the competition, in which A* and rule–based agents will be at a 

disadvantage compared to learning agents. We are planning to submit our top agent into this 

competition. 
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