
Final Report for cs229:

Machine Learning for Pre-emptive Identification of

Performance Problems in UNIX Servers
Helen Cunningham

Abstract. The goal of this work is to use machine learning to understand server performance in a SunRayTM
client-server network. Preliminary work shows differences between the data emitted by servers who are
performing well versus data emitted by those that are performing poorly. These differences emerge early in
an operational day, and so give an opportunity to pre-emptively identify servers that will be operating in an
abnormal manner later in the day. The project reduces the size of the dataset by computing a covariance
matrix between the different system variables and doing supervised and unsupervised learning in this space
(instead of the time domain). K-means clustering found 7 variable groups corresponding to hardware and OS
subsystems. Support Vector Machine algorithm was used to classify correlation output and raw data.

Introduction

Client-server networks require high levels of
performance assurance to guarantee fast and
uniform response time for all clients, applications,
threads, and network processes operating at any
given time. In the SunRayTM thin client system, this
is particularly important as nearly all application
processing -- including graphics rendering -- occurs
on the server and is communicated to the client in
UDP packet streams. In this setting, performance
decrements manifest in subtle ways, often appearing
suddenly and disappearing just as quickly.

Preliminary studies of memory, floating point
operations, and network variables have shown that
no single variable effectively captures the state of a
system for the purposes of performance evaluation,
and it is apparent that an effective characterization
of system performance must use a multivariate
model of system state.

The purpose of this project is to observe and model
server performance and to devise measures that can
be used to classify "healthy" vs. "suspect" servers.

A Sun internal application samples and stores data
from the Solaris "kernel" at 10-minute intervals. The
10-minute samples are corrected for timestamp
irregularities, differentiated where cummulative,
then interpolated and smoothed.

I. Building a Model of Normal Behavior

A sample of Unix variables for 15 consecutive
Wednesdays for 44 server machines was obtained.
After procedures detailed in "Milestone" Report
(but omitted here), we ended up with 445 server-
day datasets that we knew to be Normal, and 78
that we knew to be Atypical.

Covariance or multiple correlation reduces the time
series to a single number that relates each variable
to each of the other variables, and so realizes a large
reduction in size of the dataset.

A correlation matrix was formed for each of the 445
'normal'datasets, and a randomly selected subset of
50 were inspected visually by running the matrix
through MATLAB's "surface" function which maps
a value to a color. An example surface "heat map"
is shown in Figure 2, where data from several
similar-looking datasets have been aggregated.
Dark red cells correspond to high positive
correlation; dark blue cells correspond to high
negative correlation; pale green cells correspond to
zero correlation.

After removing variables lacking non-zero data, we
had 44 variables. The 445 44 x 44 correlation
matrices were subjected to k-means clustering to
see if variables from sub-systems of the operating

system (e.g, CPU-, user-, disk-, memory-, and
network-related variables) would cluster together. If
so, then we have reason to believe that an
automated learning algorithm will, at the very least,
recover what we already know about the system. In
order to find "k" for the k-means clustering, the
Bayesian information criterion (BIC) was found by
running 100 iterations of each of 10 values for k
(1-10) with random starting points. See the
"Milestone Report" for details.

Figure 1 shows the 44 clustered variables plotted in 2
dimensions. Ovals added manually to highlight
structure, and descriptive labels derived from each
cluster's members. With clusters identified, the heat
map visualization was improved by reordering the
variables to group them by cluster. Figure 2 shows
the resulting aggregate heat map.

Figure 1. Variable Clusters in 2-D Plot

II. Finding Servers with Atypical Behavior

The 43-dataset template was used as a standard to
which all 445 datasets were compared by unraveling
the correlation matrix into a vector and correlating
against the template. The distribution of resulting
correlations looks truncated normal (see Figure 3).

 Figure 2. Normal Heat Map

Figure 3. Distribution of Normal Correlations

 Mean = 0.8827, sd = 0.0814

The same process was followed for server-day
datasets identified as "atypical". Figure 4 shows
one example of an atypical heat map. Note that
the cluster structure is weak. Figure 5 shows the
distribution of correlations for datasets identified as
atypical, against an aggregate (formed by cell-wise
averaging) of all 78 atypical datasets. Atypical
datasets have low correlation with their own
aggregate, meaning that they are heterogeneous in
their atypicality.

Figure 4. An Atypical Heat Map

By contrast, 'normal' datasets are highly
homogeneous with respect to their aggregate.

Figure 5. Distribution of Correlations for

Atypical Datasets against Atypical Aggregate

 Mean = 0.6998, sd = 0.1069

III. Using Supervised Learning to Classify

Servers - Approach

1. Compose a training set of m datasets, in which
some proportion 'p' are known to come from
"healthy" servers and some proportion (1-'p')
come from servers visually identified as
"suspect".

2. Run multiple correlation on each set. Send the
correlation matrices to a supervised machine
learning algorithm (Support Vector Machine)
using positive and negative examples identified
from earlier steps. Generate a classification
output and examine the accuracy of this
algorithm in classifying the correlation outputs.
Use different ratios of "healthy" to "suspect"
servers in the training set, to see how this choice
impacts the Test Error of the classification step.
See next Section.

3. Also train an SVM on the raw data instead of
the correlation outputs. It may be possible to
speed up and streamline classification by
skipping the computationally-intensive multiple
correlation step.

IV. Training Set Composition & Test

Error

Intuitively, the Training Set must contain
examples of both positive and negative cases.

But one can ask "how many of each?" Does the ratio of
positive to negative traiing cases matter? In the
absence of knowledge about the Test Set, then a 50-50
ratio makes sense. But what if we have knowledge of
the ratio in the Test Set (i.e., the real world)? For
example, in the case of "healthy" and "unhealthy"
servers in a data center, there will always be more
healthy servers than unhealthy ones, or at least the
center's personnel hope so. If we want to train an
optimal classifier to detect a relatively small number of
unhealthy servers in a large group of healthy ones,
does it make sense to train the classifier on a ratio of
positive and negative cases that matches the real-
world ratio? Or is 50-50 best?

There is probably a straightforward mathematical
answer to this question based on the properties of the
SVM algorithm. However, this author lacks the skills
required to examine the problem from that angle and
it is possible to test the idea empirically. Accordingly,
the SVM algorithm was run under a set of varying
Training Example ratios, as shown below. There were
445 normal servers and 78 atypical ones in the set,
which constitutes a ratio of about 5.7 to 1. For the
study, random samples were drawn from the entire set
according to varying ratios of normal to atypical
servers.

Normal-Atypical Ratios used were 1:1, 2:1, 3:1, 4:1, 5:1,
and 6:1, in combinations ranging in magnitude from
20 normal:10 atypical up to 200 normal :50 atypical.

Multiple (50 or 100) runs were conducted for each
ratio, with each run being a different random sample
from the set, and mean and standard deviation for the
ensemble of runs were computed. We started out
with sets of 100 but they took a long time, so switched
to runs of 50.

The SVM software used for this study is the
smo_train.m script developed in Problem Set #2 of the
cs229 course (Autumn 2009). Its default settings are
0.01 for tolerance and 10 for maximum number of
passes through the training set. These are the values
used for classification of correlation outputs.

Figures 6a-e show the Test Error distributions for
each 50- or 100-iteration run. They are roughly
gaussian, truncated at the low end and long-tailed
on the high end. Medians would give lower
estimates of test error, but means in this case are
more conservative and for comparisons the two
should be equivalent.

Figures 6a-e

6a Histogram of Normal=40, Atypical = 40 (1:1 ratio)

6b Histogram of Normal=40, Atypical = 20 (2:1 ratio)

6c Histogram of Normal=60, Atypical = 20 (3:1 ratio)

6d Histogram of Normal=100, Atypical = 25 (4:1 ratio)

 6e Histogram of Normal=80, Atypical = 15 (5:1 ratio)

Distributions from the 1:1 & 1:2 Training Set ratios
had average stddev of 0.021 compared to 0.012 for the
3:1-6:1 ratios, and so are more variable. Figure 7
shows mean Test Error wrt Training Set size, for
various ratios. With standard deviations of 0.01-0.02,
most of these differences are not statistically reliable.
But the elevation of the 1:1 & 2:1 test error may be
real, and taking that together with the greater spread
of the distributions, better generalization performance
probably comes from a Training Set that mirrors the
expected Test set's ratio of "positive" to "negative"
cases. NOTE - Figure 7 is an update of the plot
shown at the Poster Session, and reflects additional
runs of random-draw study. "Best" test error is now
around 3.6%.

V. Using SVM to Classify Raw Data

So far we've done classification on the outputs of
multiple correlation. As shown in Figures 3 and 5
above, the template-match distributions of Normal
and Atypical servers are well separated (though not
linearly separable) and our simple classifier achieved
Test Error of about 3.6% under the best choice of
Training Sets we could come up with. But
correlation takes time because at least n(n-1)/2
correlations are needed, where n is the number of
variables. It is of theoretical and practical interest to
ask whether the same classification results can be
obtained using the raw time series data and skipping
the correlation step.

So we ran the same smo_train SVM algorithm on raw
data files, by unraveling the 44-variable by 1400
interpolated-time-sample matrix for each

 Figure 7

server-day into a long vector. Initial trials
indicated the default settings (tolerance 0.10 and
max_passes 10) were giving high and variable
Test Error, so we decreased tolerance to 0.001 and
increased max_passes to 40 and got lower mean
error. But this greatly increased the time
required to get a result, AND, upon examining
the Test Error distributions, it became clear that
something puzzling is going on. Figures 8 & 9
show the distributions using 4:1 Normal-Atypical
Training Set ratios. They are bimodal with spikes
in both the 90% error range and the 10% error
range. Given a binary classification task, a
random classifier would have a 50% error rate, so
could the spike near 90% mean the classification
is "correct" but for a sign change?

Figure 8

Histogram of Normal = 80, Atypical = 20 (4:1 ratio)

Figure 9

Histogram of Normal = 160, Atypical = 40 (4:1 ratio)

NOTE - The poster showed a plot of mean Test Error
for the SVM raw data classification, but with these
distributions mean error is not a good measure of
what is going on. What IS going on?

VI. Fun with SVM

Linear SVM classification can also be used on datasets
preprocessed with PCA or Cross-Correlation. These
methods are visualizable in a 2D space. Figure 10
shows Normal & Atypical servers plotted by cross-
correlation of UNIX variables users & run queue.
Normal (green) have high magnitude (Y axis) and
near-zero lag (X axis), and are tightly clumped in the
2-D space. Atypical (red) have low magnitude and
high variance in lag. This dataset was linearly
separable. (Nice ... though the plot seems to be
missing at least green support vector) . In Figure 11,
SVM uses radial basis function to cluster UNIX
process, TCP, user, and disk.

Figure 10! ! Figure 11

!

DISCUSSION

Normal servers have a "correlation print" that is
distinctly different from atypical servers and the
difference is classifiable by a simple SVM algorithm.
However, SVM on the raw data seemed to reversed
the classification of about 1/3 of the Test Set. Is this a
property of the algorithm, the dataset, or an
interaction of the two? An error of this author? If we
can get raw-data SVM to work, then how should it be
visualized? Is there a 2D representation?

Correlation outputs are approximately gaussian
distributed, so this report should have included a
gaussian model such as discriminant analysis or factor
analysis, and compared it with SVM in terms of
accuracy and efficiency. Unfortunately, time ran out.

IT'S BEEN A GREAT CLASS! THANKS!

