
Finding Optimal Hardware Configurations For C Code

John Clark, Ilana Segall
{jpclark, isegall}@stanford.edu

December 11, 2009

1 Introduction

To look at a piece of C code - especially an uncommented one - is often not very enlightening.
Even small pieces of code with one or two functions will often appear to perform the same
array initializations, loops over the data, and basic arithmetic functions, without clearly
indicating what the overall purpose of the routine is. This can be frustrating to those using
the code as part of a package who are forced to understand it as a “black box,” without
completely understanding its properties. More specifically, attempting to find the most
optimal way to run the code becomes a very difficult problem if there are, for example,
several different choices of harware to choose from, and the actions of the program are a
mystery.

In this problem, we choose to attack a tractable subproblem that we hope will be
helpful for deciding how to run this software for a user with several different hardware
options. Specifically, we have observed that most single code files perform one of two
functions: data manipulation and computation. We hope to be able to successfully classify
C code files into these two main categories to allow a user who has not been informed of
its functionality to quickly determine its core purpose, and use this information to enhance
performance of the overall project.

We choose to look at the assembly representation of these files, whose simple structure
and more limited vocabulary we believe contain the key clues to functionality in order
to perform this classification. Generally, the conversion to assembly is done “behind the
scenes,” and only a small percentage of programmers actually feel comfortable reading any
particular type of assembly and understanding what it does, so we believe that assembly
is underutilized in understanding code’s functionality. Thus, we also hope that classifying
code in this manner will provide a strong argument for using assembly to extract features of
code for use in future machine learning applications pertaining to C or other programming
languages, and eliminate the need to look at assembly directly.

2 Data

The data for our learning algorithms consists of C code files from one of the two groups: (1)
35 data manipulation algorithms and (2) 145 computational algorithms. We hypothesize
that a learning algorithm able to distinguish well between code files from these two canonical

1



groups would be also able to categorize code files with respect to their expected performance
on a hardware platform. We acquired the code files used in this project from online C
repositories and the CBLAS library. The data manipulation code consists of searching and
sorting algorithms including algorithms such as breadth and depth first search, Dijkstra’s
algorithm, the Floyd-Warshall algorithm, mergesort, and bubblesort, many of which have
several samples created to perform the algorithms over different types of data structures.
The CBLAS library is a C interface to the BLAS routines, which contain many low-level
linear algebra producures such as matrix-matix operations and operations on sparse vectors.

3 Methods

We chose to use the assembly instructions of each code file as the features for this project.
For each of the code files we produce the corresponding assembly language file by compiling
the code file with the command “gcc -S”. This produces a .s file which is the code compiled
but not assembled or linked. Each line of the assembly file has the format:
“〈Command〉〈arguments〉”. We chose to use only the assembly command, the first token
of most lines, since they carry the most information about the operation carried out by
each line.

Once each code file was compiled into assembly we wrote a simple parser to extract all
of the commands and their frequency of appearance in each code file. The parser opens
and reads each file storing in the vector ”tokenlist” commands which have not been seen
before. This gives us in ”tokelist” a list of all commands that appear in all the files which
can be used as our dictionary.

A beneficial aspect of using assembly commands as the features of our learning algorithm
is that that they are extremely regular tokens in the code files. There is no preprocessing
necessary: each command appears exactly the same way every time it occurs in the file.
Also since the commands are non-ambiguous, unlike with natural language tokens, the
meaning of each command is completely contained in its name. In contrast, a negative
aspect of using assembly commands as the features of our learning algorithm is that there
are not very many of them. Our token list taken from 180 algorithmically very different
code files contained only 48 tokens. This is a relatively small number of features from which
to gather information, though in our case we found this number to be sufficient.

Because we are performing a binary classification, we chose to compare results from
clustering, Naive Bayes, and a support vector machine. We chose to use an unsupervised
learning algorithm, k-means clustering, to see if the code examples divided themselves into
two groups different than the ones we had originally imagined, which could provide insight
into our categorizations.

With Naive Bayes, we chose to approach the problem two ways. We used the standard
Naive Bayes model, using a feature vector with every assembly command represented as
a 0 or 1, where 1 indicates a feature’s presence in the code example. We then also used
the multinomial event model to see if the code classified better as text - specifically, if the
number of times a command appeared in code was more informative than its presence. For
both methods, we used Laplace smoothing and a custom (add 1∗10−8) smoothing to avoid
0/0 errors but reduce the probability of an event we have not yet seen - especially in the
case of the multinomial event model, there are relatively few occurences of each command

2



in every document, and we want to preserve accurate multinomial probabilities as well as
we can.

Finally, we implemented a support vector machine to test the linear separability of the
data. We used a simplified version of the SMO algorithm, which converged quickly enough
that we did not feel the need to include all the optimizations in the full algorithm.

All of the tests described above were performed in MATLAB.

4 Results

4.1 Clustering

Because clustering does not have an explicit error metric and it would be very difficult
to visualize our data (as the feature vector is in 48 dimensions), we examined both how
the code divided into the two clusters and the composition of each cluster. For k = 2, we
found that, of the computational code, about 36% was in cluster 1, and 64% in cluster
2, while for data manipulation code, about 20% was in cluster 1 and 80% in cluster 2.
Alternatively, this means that cluster 1 composed of 67% is computational code and 33%
data manipulation code, while cluster 2 contained 47% computational code and 53% data
manipulation code. Clearly, clustering was not an effective algorithm to divide the code
samples into two groups.

4.2 Naive Bayes

In the tables below we show some of the estimated generalization errors calculated by cross
validation of each Naive Bayes algorithm. We performed two types of cross validation,
k-fold with k = 6 or 7, and leave one out cross validation. We ran these cross validations
for all four of the below described versions of Naive Bayes, and ran each once with all of
our files and again with a subset of the computational files (because we had more than four
times as many computation files as data manipulation ones, we wanted to assure that the
algorithms performed robustly if the amount of each was even). Figure 1 below displays
the best of the results from this analysis.

Clearly, all algorithms performed extremely well in this analysis - several checks were
performed on the implementation of the algorithm to ensure that such low error was indeed
calculated correctly. Interestingly, very little difference was seen between the standard Naive
Bayes and multinomial event model error, indicating that the presence of an instruction in
the code was as important as the frequency of its occurence. We also see that the custom
smoothing we performed did not create a better alternative than Laplace smoothing, though
because all tests returned such excellent results, we would have to examine its performance
on a different data set to conclude its effectiveness. Also, we found a slightly lower error
when we used our full data set, although the difference was negligable.

Figure 2 below shows the top five tokens that strongly indicate classification into one of
the two categories. These results agree with what we would expect from such algorithms,
especially the presence of the streaming SIMD extensions in the computation category,
which are used for parallelization of a large number of computations.

3



Figure 1: Estimated Generalization error for the Naive Bayes classification models. These
estimates are taken using both k-fold cross validation and leave one out cross validation
(LOOCV).

Figure 2: These are the top five assembly instructions which most strongly indicate that
a code file is either a data manipulation type algorithm (left column) or a computational
type algorithm (right column).

4



4.3 SVM

Using k-fold cross validation with k = 7 and an equal number of data manipulation and
computational files on our SVM, we obtained an error of 0.0143, which is also excellent.
This is an interesting result considering how poorly the data clustered, strongly indicating
that supervised learning is necessary for this classification. This indicates that though a
separating hyperplane does very well in separating the data, the functional margins of the
training examples are not very large relative to their distances from each other.

5 Conclusion

Both Naive Bayes and support vector machines appear to be excellent algorithms for classi-
fying our code, and performed much better than the unsupervised k-means clustering. The
presence of such low error in both trials indicates that the feature set was extremely in-
dicative of the classification we desired, despite the fact that it is difficult to ascertain what
assembly commands will be needed by looking at the direct C code. Assembly commands
appear to make very powerful features for code classification.

6 Future Work

The original purpose of this project was to be able to determine the optimal hardware con-
figuration to optimize the runtime of an unidentified piece of code. Due to several technical
issues, we were unable to get a hardware simulator, SimpleScalar, to import the code we
were interested in using as our training set. We do believe, however, that our classification
could be used to help make this determination (perhaps by using its designation as data
manipulation or computation as a feature) in the future. Using SimpleScalar would be an
excellent way to create the training set for such a project.

Though our feature set was sufficient for this problem, future work in this area should
also look into ways of encoding the location in the code file of the assembly command as well
as its frequency of occurrence. We feel that this would provide another piece of information
which would shed even more light on the algorithm behind the code, especially if a more
complicated problem, such as the one above, is being explored. Many other features are
available from the assembly code, such as the number of registers used and the arguments
of the instructions.

References

[1] CBLAS library. http://www.gnu.org/software/gsl/manual/htmlnode/GSL−CBLAS−
Library.html.

[2] Happy Codings. http://www.c.happycodings.com/.

5


