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1    MOTIVATION 
Many human neurological and cognitive disorders are 
caused in part by aberrancies in the composition and 
volume densities of synapses in the brain [1].  The ability 
to analyze the underlying causes of such diseases would 
be greatly enhanced by detailed knowledge about the 
ratio and quantities of different types of synapses that are 
present in specific regions of a patient’s brain.  In order to 
make this possible, neuroscientists at Stanford and 
elsewhere are working towards developing methods to 
accurately locate and classify individual synapses within a 
sample of brain tissue [2].  Although many advances have 
been made in this area of research, synapse classification 
still requires biologists to manually analyze each synapse 
in order to evaluate its type.  Here we propose a 
computational approach to synapse classification based on 
spatial protein data.  Not only would the success of this 
method this greatly increase the efficiency of labeling 
synapses by type, it could also help to elucidate novel 
types of synapses that remain undiscovered as of yet. 
 
2    OVERVIEW 
Our goal was to use spatial information (location and 
density) for multiple distinct proteins within a section of 
brain tissue to classify “potential synapses” into one of 
three categories: excitatory synapses, inhibitory synapses, 
or non-synapses.  In order to develop an effective 
solution to this problem, we aimed to answer the two 
following questions:  

(1) How can we develop a model that represents a 
synapse accurately enough to enable us to infer 
its type?, and 

(2) Which among the proteins from our dataset 
provide the most valuable information for 
classifying synapses and what does this imply 
about their biological function? 

 
3    DATA  
We obtained data from the Smith Laboratory in the 
Department of Molecular and Cellular Physiology at 
Stanford.  The dataset consists of 200 labeled examples, 
each of which is either an excitatory synapse, an 
inhibitory synapse, or not a synapse.  The information 
given for each synapse is a series of protein density 

readings that directly map to (x,y,z) locations within a 1-
µm3 cube centered at each synapse.  These readings were 
provided for a total of 11 different proteins for every 
single synapse.   
 
4    MODELS 
In order to be useful for type classification, our model 
needed to incorporate the distinguishing characteristics 
of each of the three different categories of synapse.1  One 
such characteristic is the relative amounts of different 
proteins that are present in the region around a synapse.  
We also hypothesized that the shape and size of a 
synapse, including the relative locations of the regions 
within the synapse where each protein is most highly 
concentrated, would be important indicators of its type.  
Based on these traits, we came up with two different 
models to test.   
 

4.1   Baseline Model 
The first model, which we called our “baseline” model, 
represents synapses of a given type as a multinomial 
distribution over each of the n proteins in the dataset.  
The values of the parameters of this multinomial 
represent the likelihood of encountering one unit of a 
particular type of protein in a narrow region around the 
synapse.  If x is a particular unit of protein density, and y 
is the type of the synapse in question, then we have 

 
P(x | y)  Multinomial(φy1 ,...,φyn−1 )  

where   is the likelihood that unit x originates from 
protein i given that the synapse is of type y.  Thus, a 
particular synapse is modeled by the relative quantities of 
the n proteins that it contains.  This model only 
incorporates the first of the characteristics in which we 
are interested, but it has the advantage of simplicity.   
 

4.2   Complex Model 
The next model strives to capture the characteristic 
shape and size of each type of synapse.  In order to 
accomplish this, we decided to represent each synapse by 
a multivariate Gaussian that models its physical location 
and shape in either 2-D or 3-D space (we tried both).  We 

                                                 
1 Here we refer to a “non-synapse” as a category of synapse even 
though it technically is not a synapse at all. 
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decided to experiment with three different variations of 
this idea: 

1. Model each synapse as a single Gaussian. 
2. Model each synapse as a composition of n distinct 

Gaussians, one for each protein. 
3. Model each synapse as a composition of two 

distinct Gaussians, one representing the pre-
synaptic region and the other representing the 
postsynaptic region.   

The motivation for these three slightly different models 
came from thinking about the physical structure of a 
synapse.  The most basic variant views each synapse as a 
single concentrated blotch of protein and models a 
synapse of a given type as a Gaussian over the location of 
each unit of protein density, so that we have 

 
P(x | y)  Normal( µy ,Σ y )  

where P(x|y) is the total likelihood of all protein readings 
from synapse x given that the synapse is of type y (here 
we assume that protein readings are independent when 
conditioned on y).  The next variant models each protein 
blotch from a distinct source as a separate Gaussian, as 
shown in Figure 1(a).  The third variant is based on a 
slightly more sophisticated understanding of synapse 
structure.  In reality, a synapse is not just one or several 
“blotches” of protein.  Instead, it is composed of a 
presynaptic region and a postsynaptic region that are 
responsible for carrying out different functions.  Because 
of this, different proteins localize to each region, which 
allows us to distinguish one from the other in our data.  
We based the third variation of our model, shown in 
Figure 1(b), on this inherent biological synapse structure. 

 
Figure 1. 2-D visualization of the region surrounding a single 
synapse. Red pixels indicate stronger protein readings (i.e. 
protein is very dense), blue pixels indicate weak protein 
readings. Each image also shows a white point indicating the 
mean location of all protein units in that image (location 
weighted by pixel brightness).  (a) Separate protein density 
images for each of 5 proteins; from left to right, top to bottom, 
we have: gad, bassoon, synapsin, gephyrin, PSD. (b) Protein 
density images for the presynaptic region (left) and the 
postsynaptic region (right).  The presynaptic image is made up 
of the cumulative densities of 3 presynaptic proteins: gad, 
bassoon, synapsin.  The postsynaptic image is made up of the 
cumulative densities of 2 postsynaptic proteins: gephyrin, PSD.  
Notice that the presynaptic and postsynaptic regions are 
slightly offset.   

5    METHODOLOGY 
Multinomial logisitic regression and multinomial 
Gaussian discriminant analysis (GDA) were used to fit 
and test our various models.  Because of our small data 
set size, we used leave-one-out cross validation (LOOCV) 
to estimate the generalization error of our models. 
 

5.1   Logistic Regression & Feature Selection  
We began by using logistic regression to compare our 
baseline and complex models.  In order to test our 
baseline model, we calculated the normalized protein 
distribution of each synapse in our data set and trained 
our logistic regression classifier on these n features (one 
for each protein).   
 

We next wanted to determine which aspects of our 
complex models contributed the most useful information 
to the classifier.  To do this, we first applied each of the 
three models to every individual synapse in order to learn 
a set of parameters for that synapse.  From these 
parameters, we extracted five representative features that 
we hypothesized would be valuable in classifying the 
synapses into types: 

1. Variance of the locations of proteins weighted by 
density, averaged across all dimensions of the data 
(e.g. in 2-D, we take the average of var(x) and 
var(y)), for each of the 11 proteins (n features, 1 per 
protein).  This is intended to be a measure of how 
diffuse each protein is within the synaptic region. 

2. Variance of the mean locations of each protein (e.g. 
var(µ1,...,µn) where µi = mean location of protein i 
weighted by density at each location) (1 feature).  

3. Variance of the locations of presynaptic proteins 
and variance of the locations of postsynaptic 
proteins, both weighted by density and averaged 
across all dimensions of the data.  This is 
analogous to feature 1 but for the pre- and post- 
synaptic regions (2 features). 

4. Variance of the mean locations of the presynaptic 
proteins and variance of the mean locations of the 
postsynaptic proteins (2 features). 

5. Difference from the average distance between the 
presynaptic mean and the postsynaptic mean (e.g. 
compared to the average, how far is this synapse’s 
presynaptic mean from its postsynaptic mean?) (1 
feature).  

The first two features model the synapse as a 
composition of n proteins, while the last three features 
model the synapse as a composition of presynaptic and 
postsynaptic regions.   
 

We ran logistic regression using each of these features in 
conjunction with the baseline feature (normalized protein 
distribution) and compared the results.  We also 
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performed each test using both 2-D features (i.e. features 
extracted along a fixed z-plane) and 3-D features to 
compare the information gained in three dimensions. 
  

We found that many of the above features contributed 
little or nothing to the accuracy of the classifier.  The 
feature that helped the most was the measure of how 
diffuse each protein is within the synaptic region (feature 
1).  In addition, we discovered that models that used 3-D 
features consistently matched or outperformed models 
that were based on 2-D data.  Finally, we found that 
using smaller regions to extract features significantly 
improved the accuracy of our model (Figure 3). 

  
Figure 3. Accuracy of multinomial logistic regression classifier 
using each of the six 2-D features and 3-D features in 
conjunction with protein distribution alone.  Feature 1, the 
measure of how diffuse each protein is, contributed the most 
accuracy out of all the features.   Additionally, we see from 
column 1 that 3D features extracted from a “small region” (a 
7x7x7 pixel area) provided more accuracy than the “large 
region” (11x11x11 pixels). 
 

5.2   Gaussian Discriminant Analysis (GDA) 
To further explore our complex models, we implemented 
a GDA algorithm to fit parameters to our data for each of 
the three models: 

Model 1: We fit a single multivariate Gaussian to 
each of the three types of synapses.   
Model 2: We modeled a separate Gaussian over 
each protein to characterize each synapse type by 
a set of n Gaussians.   
Model 3: Finally, we learnt a presynaptic 
Gaussian and a postsynaptic Gaussian for each 
synapse type.   

After learning each model, we classified new synapses by 
calculating P(x|y), the probability that synapse x was 
generated by the Gaussian model(s) with parameters 
µy_1,...,µy_d and Σy_1,...,Σy_d (where d = 1 for model 1, d = n 
for model 2, d = 2 for model 3) and P(y), the probability 
of encountering a synapse of type y.  We calculated 
P(x|y)P(y) for every y and selected the type category 
with highest probability.   
 

We used three-dimensional data for all three 
implementations and restricted our analysis to using the 
five proteins gad, bassoon, synapsin, gephyrin, and PSD (the 
first three of which are presynaptic proteins, and the last 
two of which are postsynaptic proteins).  We obtained 
the best results using model 2, which maintains a 
separate representation for the regions of density of each 
protein, rather than massing them together (Figure 4).  
However, neither of the three achieved a particularly 
high accuracy.  
 

 
Figure 4. Accuracy of multinomial GDA classifier using each 
of the three complex models.  Model 2, which represents each 
protein separately, was the most successful. 
 
6    RESULTS 
Our most successful classification was realized using 
logistic regression operating on the baseline protein 
distribution along with feature set 1 (measures of how 
diffuse each protein is) in three dimensions.  Our model 
yielded 84% accuracy with an ROC AUC of 0.79 for non-
synapse/synapse classification and 0.96 for excitatory 
/inhibitory synapse classification.  In comparison, logistic 
regression operating only on the baseline model of 2-D 
protein distribution yields 77% accuracy with an ROC 
AUC of 0.71 for non-synapse/synapse classification and 
0.93 for excitatory/inhibitory synapse classification 
(Figure 4).   
 

    
Figure 4. Final ROC curves comparing baseline and complex 
models in differentiating between non-synapses and synapses 
(left) and differentiating between excitatory and inhibitory 
synapses (right).  Here, “Protein Concentration” refers to 
Feature 1 in 2D. 
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7    BIOLOGICAL RELEVANCE 
Though we began with feature information for 11 
proteins, this was far too much information to train on 
with only 200 data points.  Using forward search, we 
determined a subset of four proteins that yielded maximal 
accuracy: bassoon, synapsin, gad, and PSD.  We trained and 
tested our model using each protein alone to infer the 
relative importance of each protein (Figure 5).  synapsin 
was found to be the best at distinguishing between non-
synapses and synapses and gad was the most useful for 
distinguishing between excitatory and inhibitory 
synapses.  These results agree with the currently known 
functions of these proteins.  synapsin is thought to be 
present in every synapse, which explains its strong 
performance in distinguishing between synapses and 
non-synapses, and gad is known to be a good marker of 
inhibitory synapses [3,4]. 

 
Figure 5. ROC of each protein alone in ability to distinguish 
between non-synapses and synapses (left) and between 
excitatory and inhibitory synapses (right). 
 
8    DISCUSSION 
Our results show that the protein distribution at a 
synapse is by far the best predictive characteristic of the 
data that we have for synapse type.  This result is 
unsurprising because it is based in biological fact: 
proteins have very specific biologic functions and localize 
to specific synapse types.  Here, we also explored other 
features of the data that would enrich our synapse model 
and improve our classification accuracy.  We attempted 
to represent the shape and size of synapses in a variety of 
ways.  We included certain shape/size features as input 
to our logistic regression classifier, and we also 
implemented a multiclass GDA algorithm that modeled 
each class (i.e. each synapse type) as a different Gaussian 
or set of Gaussians.  Although not all of these approaches 
were successful, our results clearly demonstrate that the 
shape and size of a synapse are relevant to its type.  We 
have two results that lead us to this conclusion.  First, we 
saw that when we added a measure of how “diffuse” each 
protein is at the synapse as an input feature to our 
logistic regression classifier, our accuracy improved.  

Secondly, our GDA classifier was most successful when 
using a model that represented the density units from 
each protein as a separate Gaussian distribution. 
 

In general, our GDA classifier was less successful than 
our logistic regression classifier.  We believe that the 
principal reason for the discrepancy between the two is 
that our GDA model did not explicitly include a 
representation of the relative amounts of each protein 
present within each type of synapse, which has proven to 
be a very powerful feature.  However, it is interesting to 
note that GDA using complex model 2 was still quite 
successful even without this feature. 
 

Although we tested many features in our logistic 
regression classifier, only a few actually contributed to 
improving our accuracy.  One model in particular that 
seemed to be of little worth is the pre-/post- synaptic 
region model.  The features extracted from this model 
did not help with logistic regression, nor did it produce 
good results when used as a basis for GDA.  One possible 
reason for this is that the pre-/post- synaptic regions are 
not well represented within the data.  The resolution may 
actually be too low to capture a clear relationship 
between the two regions. 
  

There were many other complicating factors that made it 
difficult to extract useful features and construct an 
accurate synapse model.  For example, it is possible that 
some of the labeled regions we were working with 
actually contained multiple synapses of different classes.  
These mixed signals certainly contributed to our inability 
to achieve above a maximum of 84% accuracy.    
 

Finally, we were constricted by the fact that we had very 
few training examples to work with; we only had a total 
of 200 labeled synapses.  Furthermore, within this set, 
less than 1/5 of our examples were non-synapses, which 
could explain why our ability to distinguish synapses 
from non-synapses is much poorer than our ability to 
distinguish excitatory synapses from inhibitory ones. 
 

  
Figure 6. Learning Curve for multinomial logistic regression 
classifier trained on our complex model. 
 

Another consequence of our small dataset was that our 
classifier has fairly high variance, indicated by the fact 
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that the test error is much higher than the training error 
(see learning curve plotted in Figure 6). However, we 
believe that this could be easily fixed with a larger 
training set size.  

 

It is worth noting that labeling of synapses by hand is a 
difficult problem in itself and has a fairly high error rate. 
Therefore, our 84% accuracy rate may or may not reflect 
biological truth.  Ideally, a computational approach such 
as the one proposed here could be used in conjunction to 
elucidate biology.  For example, synapses that get labeled 
as non-synapses by a computational method are ideal 
candidates to be reexamined by a neuroscientist to 
determine whether they were incorrectly labeled or 
perhaps belong to a novel type of synapse that does not 
fall into either the excitatory or inhibitory category.   
 
9    FUTURE DIRECTIONS 
The inability of any of our classifiers to surpass an 
accuracy level of 84% may be due in large part to the 
noise that exists in our data.  None of the models we 
propose account this noise, even though it almost 
certainly impacts the features we use.   
 

One important source of error is the inaccuracy which 
accrues from the wetlab techniques that are used to 
generate our data.   The spatial protein data we use is 
collected using a technique called immunostaining, 
whereby fluorescence markers are bound to proteins 
present in the tissue.  However, these markers are not 
guaranteed to bind evenly across all proteins, which can 
lead to a misrepresentation of the true underlying protein 
densities.  For example, it is possible that synapsin was 
simply not detected at a particular location, which might 
lead to that region to be inaccurately classified as a non-
synapse even though all other features indicate otherwise.   
 

A possible extension to our project would be to modify 
and extend our model so that it takes this noise into 

account and is able to adjust for the possibility that the 
data is not 100% accurate.   
 

Another source of complexity is the potential for 
synapses to overlap within the brain.  Currently, the 
model we use would inherently interpret two overlapping 
synapses as a single entity, which again leads to a 
misrepresentation of the data.  A model and inference 
strategy that could account for this situation as well 
would be all the more powerful.   
 

Another exciting direction in which to take this project in 
the future would be an attempt to apply an unsupervised 
learning algorithm to cluster synapses into different 
types based on the features that we’ve found to be most 
salient.  This approach could move beyond distinguishing 
between the three basic categories that we’ve discussed 
(excitatory, inhibitory, non-synapse) and potentially may 
reveal new classes of synapses that might be biologically 
significant.   
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