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1. Introduction 

Cancer affects people of all ages worldwide and can afflict many different parts of the body.  It is one of the 
leading causes of death in the world, accounting for 12% of all deaths and has a mortality rate of approximately one 
hundred deaths per 100,000 population.  An individual’s specific configuration of DNA (genotype) influences 
susceptibility to cancer by modulating the effects of environmental factors, affecting an individual’s behavior, and 
also by altering normal biological functions of the body. Naturally, many extensive genome-wide association studies 
(GWAS) of variability have been performed that attempt to associate specific genomic variations with cancer. 
However, due to technical limitations, those studies have focused on the evaluation of variations that occur 
commonly within a population while ignoring equally potent individual-specific variations (private variations). 
More specifically the dominant technology for measuring single nucleotide polymorphisms (SNPs) in the genome, 
microarray SNP Chips, have a limited number (between 200,000 and 1,000,000) of static, pre-selected SNPs that it 
can detect in a genome. Thus, the size of SNP microarray chips limit us to the evaluation of a subset of the estimated 
2-3 million SNPs that occur in any individual’s genome. Furthermore, as the set of target SNPs that a chip is able to 
detect is fixed, they are unable to detect variations unique to an individual. Many experts have attributed the 
marginal success of GWAS studies to the limited scope of variation analyzed with these chips [1].   

 Recent advances in sequencing technologies, specifically whole genome sequencing, have enabled the study of 
disease association with an individual's complete genotype.  Using an individual’s complete genetic sequence to 
correlate mutations with disease risk would allow us to find rarer, private variations that affect risk and likely 
contribute much more to susceptibility than previously identified common variants. Thus, as full-genome 
sequencing becomes cheaper and easier, methods for variation analysis should shift their focus from analysis of 
common SNPs to and leverage the entirety of genomic variation. The method presented here takes such an approach 
and our aims are as follows: 

 
1) Use supervised learning to build a model of cancer-relevant SNPs using a range of variation topographical, 

chemical, and functional features. 
2) Evaluate method accuracy by validating model against known cancer-relevant SNPs. 
3) Identify cancer-relevant private SNPs in a newly sequenced genome using our model. 

2. Materials and Methods 

2.1. Training Data 

As with any supervised learning problem, building a model of a cancer-relevant SNP and its validation requires 
substantial training data. To assemble such data, we extracted 5,902 cancer-associated SNPs from two manually 
curated variations databases, the Human Gene Mutation Database (HGMD) [2] and the Swiss-Var component of the 
UniProt knowledgebase [3]. Both of these repositories are populated with variations extracted from literature where 
the variant has been show to be statistically correlated with disease. As such, these variations were considered our 
gold standard for both training and validation of our model. All variations in our aggregated training data encoded 
different amino acids than the reference base (non-synonymous SNPs) and we were therefore limited to the 
classification of non-synonymous SNPs in our target genome.  

In addition to our positive training set, we extracted 29,185 neutral polymorphisms from the Swiss-Var 
database. These non-synonymous mutations had not been associated with any diseases and were used as our 
negative training set.   

                                                 
1 These individuals are not in CS229 but worked on the project in conjunction with BMI212. 
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2.2. Features 

For each SNP, we extracted a variety of features including cancer-relevant functional associations, involvement 
in known cancer pathways, and variation of amino acid physiochemical properties.  

SNP functional associations are binary features indicating whether a SNP is present in transcripts that have a 
functional role in cancer-relevant processes. To calculate these features, we mapped each SNP to corresponding 
coding transcripts, extracted transcript gene ontology (GO) [4] annotations from the EnsEMBL genome database 
[5], and determined if the associated transcript was involved in any of the following biological processes or 
subprocesses: “response to tumor” (GO:0002347), “apoptosis” (GO:0006915), “regulation of cell cycle” 
(GO:0007049), or “DNA repair” (GO:0006281). It naturally follows that the successful determination of these 
features relies heavily on the availability of correct, complete annotation of genes by GO terms. 

We included another binary feature indicating whether each SNP is present in a gene known to be part of an 
established cancer pathway.  To calculate this feature, we used the EnsEMBL Perl API to map each SNP to 
corresponding coding transcripts and map transcripts to genes. We then cross-referenced these genes against all 
genes in all known cancer pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) [6]. The utility 
of this feature is dependent on the availability of previously annotated and correct descriptions of cancer pathways.  

Finally, for each SNP we calculated basic physiochemical differences between the encoded wild type amino 
acid and variation-encoded amino acid. These features include change in amino acid polarity, change in amino acid 
hydrophobicity, Grantham Matrix score (a score quantifying differences between any two amino acids) [7], and 
transformation of an amino-acid encoding codon to a stop codon. These features, although not specific to cancer, 
were included because they are easily computable for all amino acids and are not dependent on prior manually 
curated data. 

2.3. Model Building 

2.3.1. Feature Selection 

A common problem when building a classifier is the use of correlated features that make the model overly 
sensitive to specific factors. To avoid this problem, we applied correlated feature selection (CFS) to our 9 features in 
order to discover any redundant information within our feature set. Next, we evaluated each feature independently to 
determine their respective predictive powers. Finally, although issues of dimensionality and overfitting can 
potentially occur when building models from many features, our low feature set to training set size ratio minimizes 
the risks of these effects.  

2.3.2. Classifier Selection 

Using our training data, calculated features, and the Weka machine learning software framework [8], we 
constructed four models of a cancer-relevant SNP. We first used Weka’s J48 decision tree learner with pruning and 
boosting. Next, we trained a support Vector Machine (SVM) using the SMO algorithm. For our SVM, we used a 
standard linear kernel due to the linear nature of our features. Finally, we tested two types of Bayesian classifiers: 
the simple to train naïve Bayes classifier and the more powerful Bayes net classifier. Of note, all our features besides 
the Grantham matrix score do not have any immediately known relationships and accordingly the Bayes net 
classifier performed similarly to naïve Bayes classifier.   

For each of these classifiers, we trained a model using our cancer-associated SNP training set described in 
section 2.1, performed 10-fold cross-validation on each model, and use ROC curves to evaluate the performance of 
each model. We evaluated each model’s performance and ultimately chose the naïve Bayes classifier to identify 
cancer-relevant SNPs in the recently sequenced genome of a male of European decent, hereafter referred to as P0 
[9]. 
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2.4. Application to P0 SNPs 

Having trained a model for cancer-relevant SNPs, we next sought to identify potentially deleterious private non- 
synonymous coding SNPs in the P0 genome. To establish our subset of SNPs for classification, we first started with 
the set of all 2.7 million P0 SNPs as provided by the team that assembled the P0 genome. In order to remove 
population-common variants, we leveraged knowledge of common patterns of human genetic variation as 
established by the International HapMap project. We removed all P0 SNPs corresponding to SNPs established by 
the International HapMap project as having a population prevalence greater than 0.5%. Removal of population 
common variants left 1.9 million private SNPs. Next, non-coding SNPs were eliminated by mapping all private 
SNPs to the NCBI v36 human reference genome using the EnsEMBL core Perl API. SNPs that failed to map to 
coding regions of transcripts were removed, leaving 13,533 private coding SNPs. Finally, we computed variation 
effects of coding private SNPs using the EnsEMBL variation API. Synonymous SNPs were removed, leaving us 
with a final total of 6,718 private non-synonymous coding variations for classification. Post extraction, each SNP 
was classified using our trained naïve Bayes classifier and cancer-relevance was assessed.  

3. Results 

3.1. Feature Evaluation and Classifier Performance  

3.1.1. Feature Selection 

 Using CFS, we found no correlations among our features and thus chose to use all of them when building our 
model. Results of our evaluation of feature predictive power are shown in Table 1. This evaluation revealed that Cell 
Cycle, Member of Cancer Pathway, and DNA repair were the most informative of our features. Other functional 
properties, such as tumor response and apoptosis, effectively had no predictive power because none of our training 
SNPs were functionally mapped to these categories via GO annotations.  

 
Table 1. Results of classification using single features. 

 
 

 
 
 
 
 
 
 
 
 

3.1.2. Model Evaluation 

We performed 10-fold cross-validation on each one of our classifiers in training. The results are summarized in 
Table 2. The two Bayes methods performed best in AUC and sensitivity, while the decision tree and SVM were both 
more specific. We chose to use naïve Bayes as our final classifier, as it had the highest sensitivity among the 
classifiers we used, and the second highest AUC. The specificity was above 0.95 so we can be reasonably confident 
of our positive predictions. We determined the learning curves for several of our classifiers as a final test for bias 
and variance problems. Neither bias nor variance was significant issues for any of the classifiers. 

Finally, as a sanity check, we classified HGMD diabetes mutations with a naïve Bayes classifier trained on our 
gold standard cancer SNPs. As expected, we have less than 10% sensitivity for predicting diabetes with our 
classifier, which demonstrates its specificity to cancer.  

Feature Accuracy Specificity Sensitivity AUC 
Stop Mutation 83.9483 1.0 0.093 .5421 
Hydrophobicity Change 82.3105 1.0 0.0 .4998 
Grantham Score 83.9891 1.0 .095 .5434 
Polarity Change 82.3105 1.0 0.0 .4998 
Member of Cancer Pathway 88.8617 .976 .482 .7239 
Apoptosis 82.3105 1.0 0.0 .4998 
Cell Cycle 90.1104 .981 .53 .7502 
Tumor Response 82.3105 1.0 0.0 .4998 
DNA Repair 89.1504 .983 .468 .7222 
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Table 2. Results of classifier performance using 10-fold cross validation. 

 
 Type AUC Accuracy Specificity Sensitivity 
 J48 .8026 .90813 .982 .564 
 SVM  .7622 .90346 .981 .544 
 Naïve Bayes .8286 .90136 .963 .614 
 Bayes Net  .8299 .90496 .969 .607 
 Naïve Bayes - Diabetes .6424 .98115 .997 .087 

 

3.2. Identifying Novel SNPs 

Using our naïve Bayes classifier, we predicted with confidence greater than 95% that 210 private, non-
synonymous SNPs in the P0 genome have potential cancer relevance. Of these 210 variations, 65% changed an 
amino acid-encoding codon to a stop codon, 5% occurred within known cancer pathway genes, 4% occurred within 
genes involved in cell cycle regulation, and 2% occurred within DNA repair genes. Additionally, of the 1,794 
training SNPs extracted from HGMD, 32 were found to occur within the P0 genome, 10 of which we successfully 
re-predicted. Factors contributing to low recall of our gold standard SNPs are examined in the discussion section. 

4. Discussion 

Using our naïve Bayes classifier, we were only able to re-predict correctly 10 of the 32 SNPs that were included 
in both P0's genome and our gold standard for cancer-associated mutations; however, these results are actually quite 
promising given that our model has 96.3% specificity.  The high specificity of our model gives great confidence that 
any mutation our classifier predicts as being cancer-associated is not a false positive, which is important in the 
context of identifying candidates for biological exploration.  Pursuing any of these candidates further would require 
significant effort both in terms of time and funds, so ensuring the quality of these results is essential. 

Looking in further detail at putative cancer-relevant private SNPs, it is straightforward to hypothesize about the 
detrimental effects of these mutations and how they might contribute to cancer susceptibility. A mutation on 
Chromosome 14 at base 53,487,272 changes an encoded amino acid from valine to alanine in the Bone 
Morphegenetic Protein 4 gene (BMP4) protein product. This mutation occurs within a transformation growth factor 
domain and could potentially alter the protein's ability to control cell proliferation and differentiation. Furthermore, 
other mutations in BMP4 have been shown to cause defects during eye, brain, and digit development [10]. 

Another mutation on chromosome 17 at base 42,589,359 changes a leucine-encoding codon to a stop codon in 
the Cell Division Cycle Protein 27 (CDC27) gene product. This mutation reduces the encoded peptide to 254  amino 
acids from 824 and eliminates the presence of a tetratrico peptide repeat domain at the C-terminus of the peptide, 
thus altering the protein product to properly bind with other proteins and accordingly, mediate cell division. Such 
results give us confidence that variations identified as deleterious by our method are biologically relevant.  

Figure 2. A and B show ROC curves for naive Bayes, Bayes net classifiers. C shows performance of naive Bayes 
classifier on diabetes data 
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Through analysis of our selected features and their predictive power for cancer susceptibility, we found that 

there appears to be a tradeoff between the information content of a feature and its ease of obtainment.  We can make 
the best predictions when we know whether or not the mutation was part of a transcript involved in cell cycle 
regulation or DNA repair or was a member of a known cancer pathway because those three features had the highest 
accuracy and sensitivity when they were used individually to predict cancer risk.  We attribute the high information 
content of these features to the central nature of these processes to all cancers. Unfortunately, because these features 
are dependent on human annotation, they were inconsistent in availability due to incomplete genomic annotation.   

Surprisingly, some of the features that we hoped would be informative did not contribute to the accuracy of our 
classifier.  Those features which have an AUC <= 0.5 when evaluated individually essentially provide the same 
amount of information as random chance, so mutations involved in tumor response and apoptosis were not any more 
likely to be predicted as cancer-associated than mutations without these functional properties. On closer examination 
however, we found that this lack of predictive power occurs because there are almost no SNPs associated with either 
of these two properties in our training data sets; only one of our training cancer SNPs is associated with apoptosis 
and none of our training cancer SNPs were associated with tumor response.  We do not know for sure whether these 
features could improve our results given more complete gene annotation, but based on results for our other 
functionally defined features, we believe that they are still promising candidates for prediction. 

5. Conclusions and Future Work 

Despite inherent data biases, our method successfully leverages the entire genome in order to provide 
personalized, highly specific analysis of an individual’s private mutations. Our method allowed us to identify 210 
putative cancer-relevant SNPs in the P0 genome that are similar to our training set in terms of the defined feature 
set. These high confidence predictions serve as an excellent starting point for further biological exploration.  

Functional associations and other cancer-specific features had among the highest information content, but their 
predictive powers were hampered by incomplete annotations. Future iterations of our method will could avoid such 
biases of manual curation by incorporating more complex yet universally computable features such as SNP presence 
within conserved structural domains.  

 Finally, given the 210 putative cancer-relevant SNPs, there is currently no way for us to quantify risk conferred 
by each variation given our available training data. To enable such analyses in the future, models of cancer-relevant 
SNPs should be partially derived from variations present in the genomes of well-documented cancer patients. Given 
the technology used to sequence the genome of P0, such data should be available within a few years. Much in the 
same way that full genome sequencing has enabled more specific, personal analyses of variation versus disease, so 
too will it enable better models of deleterious variation through the availability of full genomic sequences of 
diseased patients. 
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