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I. Introduction 

Since the mid-19th century, scientists have recognized that the process of carcinogenesis produces characteristic morphological 

changes in cancer cells. To this day, careful morphological analysis of microscopic images remains the single most important 

diagnostic tool used to classify cancer in routine clinical practice. In the past decade, the molecular understanding of cancer has 

increased tremendously, driven in large part by gene expression profiling experiments, which quantify the expression of virtually 

all known transcripts in the human genome[2]. Despite widespread acceptance of the clinically and biologically useful 

information contained in both morphological features and gene expression profiles, there has to date been no effort to 

systematically integrate gene expression changes in cancer with a computational assessment of morphologic changes.  

 In this paper, we developed tools to permit an integrative analysis of gene expression and morphology, thus allowing the 

identification of gene sets that are associated with morphologic phenotypes. To accomplish this, we first developed image 

analysis tools to permit the measurement of tissue and cellular structures in breast cancer microscopic images. We then applied 

sparse canonical correlation analysis (CCA) to identify relatively small sets of genes that show maximal correlation with 

relatively small sets of image features. Lastly, we assessed the association of a score integrating data from image and gene 

feature with patient survival. This analysis permits the first steps towards a molecular understanding of the morphologic 

variability in breast cancer and suggest pathways through which molecular changes drive tumor morphologic changes, which 

ultimately impact patient outcome. 

  

II. Materials and Methods 

IIa. Breast Cancer Dataset 

We are using the Netherlands Cancer Institute (NKI) dataset, which contains gene expression profiling data (~24K probes per 

sample) and survival data from 295 breast cancer patients [13]. This data is publically available (http://microarray-

pubs.stanford.edu/wound_NKI/explore.html). In addition to the gene expression microarray and clinical data, we have obtained 

1282 (~5 images per patient) microscopic images of H&E stained breast cancer histologic sections from 249 of the NKI patients.  

 

IIb. Epithelial/Stromal and Nuclear/Cytoplasmic Segmentation 

Epithelial cancers are composed of two tissue compartments: the malignant epithelium (which contains the breast cancer cells) 

and the cancer stroma, which contains a milieu of "supportive" cell types (including fibroblasts, endothelial cells, and smooth 

muscle cells)[1]. The epithelium itself is comprised of individual epithelial cells, each of which contains a nucleus (with the 

cell's genetic material) as well as the cytoplasm. All tissue and cellular compartments of cancer undergo changes, but these 

changes are often most profound in the epithelial nuclei, as the nuclei contain DNA, and cancer is primarily a disease of genetic 

abnormalities (acquired and/or inherited). Therefore, an important first stage of our project was to develop a classifier to separate 

epithelium from stroma, and then to develop a second classifier to work within epithelial cells to separate nuclei from cytoplasm. 

 To develop a classifier to distinguish tissue regions (epithelium and stroma) and cellular regions (nucleus and 

cytoplasm), we adapted a standard pixelwise CRF model, as described as the baseline method in Gould et al. [5]. Given an 

image ℐ composed of pixels 𝑝, region class labels 𝑆, and pixel appearance vector 𝛼𝑝 , this model took the form of a unified 

energy function: 

𝐸 𝑆 ℐ =   𝜓𝑝 𝑆𝑝 , 𝑆𝑞 ;  𝛼𝑝 , 𝛼𝑞 𝑝 +  𝜃  𝜓𝑝𝑞  𝑆𝑝 , 𝑆𝑞 ; 𝛼𝑝𝛼𝑞 𝑝𝑞 , where 𝜓𝑝  is a multi-class logistic over boosted appearance 

features, 𝜓𝑝𝑞 is a boundary penalty to encourage adjacent pixels to take the same value, and 𝜃 are model parameters. The model 

was implemented using functions provided in the STAIR vision library [6]. For each pixel in the training set, the local pixel 

appearance vector 𝛼𝑝  was constructed with both raw image features of the pixel and of surrounding pixels. The raw features 

measured for the pixel and surrounding pixels are the 17-dimensional color and texture features determined in Shotton et al.[11]. 

In training the classifier, the raw image features are augmented by region predictions made by a one-vs-all boosted classifier 

trained on the raw features of a given pixel's neighboring pixels. Inference of region label is performed with a two-sage hill 

climbing approach to minimize the energy function.  
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 To obtain ground truth labels, a pathologist (AB) manually labeled a subset of images (65 images were labeled for the 

epithelial/stromal classifier). After epithelial/stromal segmentation and prior to nuclear segmentation, the epithelial images were 

further processed to remove inflammatory cells, by implementing the strel and imopen functions in Matlab, which 

morphologically open the image based on a structure element. A threshold is then applied to this opened image and the pixel 

locations of the thresholded image are mapped to the original image of epithelium, with most inflammatory cells (which tend to 

be smaller and less cohesive than the epithelial cells) filtered out. Following this step, ground truth labels were obtained for 

nuclei and cytoplasm from 7 images and a nuclear/cytoplasmic classifier was trained and applied to the segmented epithelial 

regions. Following identification of nuclear regions (as described above), we performed segmentation of individual nuclei using 

an adaptive Otsu approach [10]. 

 

IIc. Image feature extraction 

To measure epithelial and stromal image features, we have developed an epithelial nuclear feature measurement pipeline and a 

stromal feature measurement pipeline using the open source CellProfiler software (http://www.cellprofiler.org/), which 

implements routines in Matlab. We measured a variety of descriptors of image texture and heterogeneity as well as nuclear size, 

shape, intensity, texture, and crowding. Following development of the image feature extractions pipelines, we used the analytic 

pipelines to measure 120 epithelial features and 120 stromal features from our set of 1282 images obtained from 249 patients. 

For features measured from individual nuclei, we summarized the measurements per image by taking the mean. This process 

produced a 249 patient by 240 image feature data matrix. 

 

IId. Identification of sets of genes that show maximal correlation with sparse sets of morphologic features 

A primary goal of this project was to identify gene expression patterns that show maximal correlation with morphological 

phenotypes. A natural unsupervised learning algorithm for achieving this goal is canonical correlation analysis (CCA). The CCA 

procedure was initially proposed by Hotelling in 1936 [8] and can be applied to this project as follows: Let X1 denote the n x p1 

data matrix of image features with n samples and p1 image features, and let X2 denote the n x p2 data matrix of gene expression 

features with n samples and p2 gene expression features. We first standardize the features in each dataset to have mean zero and 

standard deviation of 1. The CCA procedure will produce a p1 dimensional weight vector w1 and a p2 dimensional weight vector 

w2 that maximize the CCA criterion:  

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝑤1𝑤2
𝑤1

𝑇𝑋1
𝑇𝑋2𝑤2 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑤1

𝑇𝑋1
𝑇𝑋1𝑤1 =  𝑤2

𝑇𝑋2
𝑇𝑋2𝑤2 = 1 

Standard CCA is difficult to implement with high dimensional data, where the numbers of features measured (p) far exceeds the 

number of samples (n). Given the large number of image and gene features measured in our study, we chose to implement a 

penalized form of CCA to produce sparse linear combinations of genes highly correlated with sparse linear combinations of 

image features. We implemented penalized CCA using the technique of Witten et al.[14, 15] with the package "PMD" in the R 

language for statistical computing (http://cran.r-project.org/). The sparse CCA criterion is as follows: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝑤1𝑤2
𝑤1

𝑇𝑋1
𝑇𝑋2𝑤2 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝑤1  1  ≤  𝑐1 𝑝1 ,   𝑤2  1 ≤  𝑐2 𝑝2 ,   𝑤1  

2
≤  1,   𝑤2  

2
≤  1 

The L1 (Lasso [12]) penalty applied to the weight vectors (w1 and w2) (  𝑤1  1  ≤  𝑐1 𝑝1 ,   𝑤2  1 ≤  𝑐2 𝑝2) has the effect of 

driving most weights to zero for small values of the tuning parameter c, resulting in sparse and more easily interpretable sets of 

image and gene features with non-zero weights. It is noted that the sparse CCA criterion is biconvex, and with 𝑤1 fixed is 

convex in 𝑤2, and with 𝑤2 fixed is convex in 𝑤1, and thus can be solved by an iterative algorithm, in which 𝑤2 is initialized to 

have an 𝐿2 norm 1 and the following 2 steps are repeated until convergence [15]:  

1) 𝑤1 ≔ arg 𝑚𝑎𝑥𝑤1
𝑤1

𝑇𝑋1
𝑇𝑋2𝑤2 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝑤1  1  ≤  𝑐1 𝑝1 ,   𝑤1  

2
≤  1 

2) 𝑤2 ≔ arg 𝑚𝑎𝑥𝑤2
𝑤1

𝑇𝑋1
𝑇𝑋2𝑤2 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝑤2  1  ≤  𝑐2 𝑝2 ,   𝑤2  

2
≤  1 

To select the penalty terms c1 and c2, we evaluated ten sets of c1 and c2 values evenly spaced within a range from 1 to √p1 and 

√p2, respectively. During each of these ten trials, sparse CCA is performed with a given set of tuning parameters c1 and c2 to 

generate a pair of weight vectors (w1,w2) and the value of 𝐶𝑜𝑟 𝑋1𝑤1 , 𝑋2𝑤2  is recorded. The significance of the 

𝐶𝑜𝑟(𝑋1𝑤1 , 𝑋2𝑤2) for a given set of c1 and c2 is estimated by permutations. We performed 200 permutations. During each, the 

samples in X1 and X2 are randomly permuted to obtain matrices 𝑋1
∗ 𝑎𝑛𝑑 𝑋2

∗. Sparse CCA was then performed on the permuted 

data to generate 𝑤1
∗ 𝑎𝑛𝑑 𝑤2

∗ and 𝐶𝑜𝑟(𝑋1
∗𝑤1

∗, 𝑋2
∗𝑤2

∗). The sparse CCA algorithm then implements Fisher's transformation to 

convert the real correlation and set of 200 permuted correlations into random variables that were approximately normally 

distributed, which we denote as fc and fc*. A p value is then computed for each pair of w1,w2 resulting from a given value of the 

tuning parameter c, as the fraction of the 200 fc* that exceed fc. We ultimately selected tuning parameters c1 and c2 that gave a 

high 𝐶𝑜𝑟(𝑋1𝑤1 , 𝑋2𝑤2), low p value, and an easily interpretable number of non-zero weights. To compute a second 

approximately orthogonal set of feature weights (w1 , w2) 2 , it is noted that the the sparse CCA criterion can be re-formulated as 

maximizing: 𝑤1
𝑇𝑍1𝑤2 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝑤1  1  ≤  𝑐1 𝑝1 ,   𝑤2  1 ≤  𝑐2 𝑝2 ,   𝑤1  

2
≤  1,   𝑤2  

2
≤  1, where 𝑍1 =  𝑋1

𝑇𝑋2. Z2 is then 



3 
 

computed as 𝑍1 −  𝑤1𝑍1𝑤2𝑤1𝑤2
𝑇 . The optimization problem stated above is then repeated with Z2 replacing Z1.  We chose to 

compute only two factors for this project; however, the above procedure may be repeated to obtain as many sets of weight 

vectors as desired[7]. 

 

IId. Analysis of Functional Gene Set Enrichment 

Following identification of genes with non-zero values in the gene weight vector for factors 1 and 2, we identified biological 

pathways significantly enriched in the sets of genes positively and negatively associated with the linear combination of image 

features by uploading our gene sets to the DAVID set of bioinformatics resources[9] and identifying clusters of annotation terms 

with highly significant enrichment in our gene sets. 

 

IIe. Survival analysis 

To assess the association of the image gene feature combinations with survival, we computed a single score for each patient that 

we called the Image-Gene Score (IGS), which was simply the sum of the linear combinations of image features and gene 

features for the two factors. For a given sample (i), where 𝑋(𝑖) denotes the ith row of matrix X and 𝑤(𝑘) denotes the weight vector 

for the kth factor :  

𝐼𝐺𝑆(𝑖) =  𝑋1(𝑖)𝑤1
(1)

+  𝑋2(𝑖)𝑤2
(1)

+  𝑋1(𝑖)𝑤1
(2)

+  𝑋2(𝑖)𝑤2
(2)

 

To assess, the association of the IGS score with survival, we discretized the scores into three quantiles, plotted Kaplan Meier 

survival curves, and performed the log-rank test to assess statistical significance. To assess the additive effect of the IGS for 

predicting survival in a multivariate model containing histologic grade, we fitted a Cox proportional hazards model[3] and 

computed p values to assess the probability that the IGS and grade were each contributing to the predictive accuracy of the 

model.  

 

 

III. Results 

IIIa. Development of Epithelial/Stromal Classifier and Nuclear/Cytoplasmic Classifier 

For the purposes of quantitatively assessing accuracy, we trained the classifier on 2/3 of our labeled images and tested it on the 

remaining 1/3. The epithelial/stromal classifier achieved an overall accuracy of 84% with recall/precision of 0.93/0.95 on 

background, 0.80/0.79 on epithelium, and 0.82/0.81 on stroma. An example test image is provided in Figure 1. We have not yet 

labeled enough nuclear/cytoplasmic regions on images to permit a quantitative evaluation of the nuclear/cytoplasmic classifier 

on new images, but it achieved an overall accuracy of ~92% on the training images and qualitatively performed well on the new 

images in the dataset. We also have not yet quantitatively assessed the accuracy of the nuclear region segmentation or nuclear 

measurements; however, they appear to work well in most cases. 

 
Figure 1. Segmented breast cancer image from test set. A. H&E stained microscopic image of breast cancer. B. Image with 

superimposed labeling of epithelium (red) and stroma (green). C. Outlines of segmented stromal nuclei objects. D. H&E stained 
segmented epithelial region. E. Epithelial region is further subdivided into nuclear (red) and cytoplasmic (green) regions. F. 
Outlines of segmented epithelial nuclei objects. 

 

IIIb. Identification of highly correlated gene expression and image features As described in materials and methods, we 

performed sparse canonical correlation analysis with 2 factors and selected tuning parameters c1 and c2 based on the resulting 

𝐶𝑜𝑟(𝑋1𝑤1 , 𝑋2𝑤2), significance of the correlation, and desired number of non-zero weights for images and genes. A plot of the 

observed correlation for the set of ten penalty terms tested is shown in Figure 2. We selected c1 = 27.8 and c2 = 3.8 , which gave 

𝐶𝑜𝑟 𝑋1𝑤1 , 𝑋2𝑤2 = 0.95, 𝑝 = 0.03 and resulted in ~1000 non-zero gene weights and ~10 non-zero image feature weights. 
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IIIc. Biological analysis of sets of highly correlated gene expression and image features 

The 9 image features with non-zero weights in Factor 1 were all measurements of stromal density. Functional gene set 

enrichment analysis of the 1318 genes with non-zero weights in Factor 1 shows that the set of genes with non-zero weights (both 

positive and negative) is most enriched for membrane glycoproteins (Bonferroni p = 2E-7). The 10 image features with non-zero 

weights in Factor 2 were descriptors of epithelial nuclear size, shape, and texture. Functional gene set enrichment analysis of the 

1297 genes with non-zero weights in Factor 2 shows that the set of genes with positive weights is highly significantly enriched 

for proteins operating in the stroma/extracellular matrix (Bonferroni p = 1.4E-20) and the set of genes with negative weights is 

highly significantly enriched for proteins that operate in cell cycle regulation (Bonferroni p = 1.9E-14). These findings represent 

the first step to a detailed understanding of the gene expression patterns driving stromal and epithelial morphologic variability in 

breast cancer. The findings from Factor 1 suggest that the expression of membrane glycoproteins may be a regulator of stromal 

density. Analysis of the Factor 2 gene set suggests that the expression of a coherent set of extracellular matrix proteins is 

negatively correlated with the expression of a set of proteins regulating DNA replication. These findings suggest a network of 

epithelial-stromal interactions and provide a candidate list of (likely) epithelial (including: TNFSF13B, PTTG2, CCNB2)  and 

stromal proteins (including: TGFB3, COL3A1, SPON1, SPARC) whose interaction is tightly correlated with nuclear 

morphologic changes. 

 

IIId. Analysis of Patient Survival 

Although we did not supervise our sparse CCA analysis with survival data, it seemed plausible that genes with non-zero weights 

may be mechanistically important drivers of patient survival, as they were chosen due to their high correlation with tumor 

morphologic changes. To assess this hypothesis, as described in the Materials and Methods, we computed an IGS score for each 

patient to summarize the gene and image linear combinations generated by sparse CCA. We stratified patients into three equal-

sized groups based on their IGS score and plotted Kaplan Meier curves, which demonstrated significantly different survival rates 

in the three groups (Log-rank test p = 9E-9) (Figure 3). We fit a Cox proportional-hazards survival model with grade and the 

discretized IGS score and found that both features contributed prognostic information to the model (both p < 0.01).  

  A. Kaplan Meier Survival Curves   B. Cox Multivariate Survival Analysis 

 
Figure 3. Survival analysis. A. Kaplan Meier survival curve of breast cancer cases stratified by IGFS into 3 quantiles. The y 

axis is probability of survival and the x axis is time in years. The Log-rank test compares the equality of the three survival 
functions. The p value indicates that the probability of equality of the three survival functions is 9E-9. B. A multivariate Cox 
proportional hazards survival model was fitted with discretized IGFS and grade, which were both independent predictors of 

survival in the model. The Cox model takes the form ℎ𝑖 𝑡 =  ℎ0 𝑡 exp(𝛽𝐼𝐺𝑆𝑥𝐼𝐺𝑆
 𝑖 + 𝛽𝐺𝑟𝑎𝑑𝑒𝑥𝐺𝑟𝑎𝑑𝑒

 𝑖 
), where ℎ𝑖 𝑡  represents patient 

i's risk of death at time t,  ℎ0 𝑡  is the baseline hazard function, and the 𝛽′𝑠 are the coefficients for the covariates in the model[4]. 
Exp(Coef) can be interpreted as multiplicative effects of the covariates on the hazard.  Holding grade constant, an IGS score of 3 
reduces the yearly risk of death by 50% compared to an IGS score of 2. Column Z displays the ratio of each regression 
coefficient to its standard error, which is a Wald statistic. Both IGS and Grade have significant coefficients and their Z's are 
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associated with low p values. The logrank test p value on the final row indicates the probability of the truth of the null hypothesis 
that all of the β's are zero. This hypothesis is rejected. 

 

IV. Conclusions 

In this paper, we developed methods for computational analysis of tumor morphology and integration of these measurements 

with gene expression data and patient survival data. Using sparse CCA, we identified two factors, each comprised of a set of 

genes highly correlated with a set of image features. The image features in the first factor were entirely stromal, and the image 

features in the second factor were entirely epithelial nuclear. Functional gene set analysis of genes with non-zero weights in 

Factor 1 suggests that membrane glycoproteins may be important regulators of stromal morphology. Analysis of the Factor 2 

gene set demonstrated that the genes with positive weights were highly significantly enriched for proteins operating in the 

stroma/extracellular matrix, while genes with negative weights were highly significantly enriched for proteins that regulate DNA 

replication/cell cycle. These findings suggest that this set of stromal and cell cycle proteins likely interact in a pathway that 

directly impacts epithelial nuclear morphologic changes. Since the sparse CCA analysis was designed to identify genes and 

image features that were mutually correlated, it seemed likely that these sets of morphologic and molecular changes might be 

mechanistically important and associated with patient survival. To assess the association of the factors identified by sparse CCA 

with outcome, we simply added the linear combinations of the gene and image features from the two factors into a unified score 

(IGS). We found that the IGS was highly associated with patient survival and provided additional prognostic information to 

histological grade. Taken together, our findings suggest that the integration of molecular and morphologic measurements 

represents a promising new strategy for studying breast cancer biology and for identifying sets of genes and image features 

associated with patient outcome. 
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