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Abstract. Morphological component analysis (MCA)[1, 2] is a popular image processing algorithm that
extracts degrading patterns or textures from images and simultaneously performs inpainting (estimation
of lost pixels). MCA has a wide range of uses, including MRI image enhancement and restoration of old
photographs. However, in these authors’ opinions, an application that has been widely overlooked is the
use of MCA in restoring video footage. We present a novel implementation of an augmented version of
MCA known as multichannel morphological component analysis (mMCA), and use it to reconstruct heavily
degraded video. Our algorithm examines consecutive frames of video footage in order to identify and remove
distortions. Results in this paper indicate that this approach has some significant advantages over the use
of conventional MCA on individual video frames.

1. Introduction

Repetitive textures often degrade images, ruining fine detail and obscuring relevant information. Formally,
if we represent an image as a vector1 X, we can decompose it into two or more components, X =

∑
Xn.

A particularly useful decomposition for image processing applications is into piecewise-smooth (cartoon)
and repetitive (texture) components, respectively called X1 and X2 . In this case, we are interested only
in the undistorted cartoon component, and would like to isolate the degrading texture. Figure 1.1 shows a
decomposition of an image into cartoon and texture components. We can introduce another complication:
the data vector X may have missing entries. This can occur when the image itself is damaged, or if the system
used to capture the image is imperfect. In this case we would like to remove the texture component of an
image and simultaneously make the best possible estimate for the missing entries of the cartoon component.
While a great deal of previous literature has been devoted to MCA–an algorithm that accomplishes this task
for single images–this report focuses on video restoration. We address the following question: given not one
vector X, but a sequence of vectors labeled Xi , how is this additional data optimally leveraged to produce
accurate estimates of the original, undistorted cartoon components X i

1 ? We do this by implementing an
extension of MCA called multichannel MCA (mMCA)[3] and applying it to video data.

Figure 1.1. MCA, as implemented in the MCALab package[1], used to decompose an
image into cartoon and texture components.

1Although it is conventional to represent an image as a matrix, for ease of notation we use a vector representation. Reasons
for this will be clarified in the theory section.
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This paper is organized as follows: In section 2, we outline the theory behind MCA, explaining how
it separates morphological components (in this case, cartoon and texture layers), and how it performs
inpainting. In this discussion, we describe how the inpainting process is essentially expectation-maximization
(EM). In section 3, we outline our approach for restoring video data. In section 4, we present results from
a series of experiments to determine the effectiveness of this extension of MCA. We find that when a high
percentage (> 95%) of the pixels are missing, our method substantially outperforms merely applying the
standard version of MCA to individual video frames. We end with a short conclusion where we consider
possible future directions of this research.

2. Theory

The fundamental insight behind MCA with respect to the decomposition problem X =
∑

Xn is that
for each layer Xn there often exists a basis Tn in which the given layer is sparsely represented. These
bases are referred to in this paper as ’dictionaries’, which is their conventional name in MCA work[1, 2, 3].
For the cartoon/texture decomposition of an image, X = X1 + X2 (henceforth, we will only consider this
decomposition, although the theory is valid for a general decomposition as well), this gives X = T1α1+T2α2 ,
with αi sparse. Furthermore, the dictionaries can be made mutually incoherent, meaning that for instance
the cartoon component X1 is sparsely represented only when transformed by some operator Φ1 into the
T1 (cartoon) basis but is not sparse when transformed into the texture basis, and vice versa. In other
words, each dictionary is a desirable basis only for its specific component, allowing the MCA algorithm to
distinguish between the cartoon and texture components of an image. This formulation leads to the following
optimization problem:

{α∗
1 , α

∗
2} = argmin ‖α1‖0 + ‖α2‖0 : X = T1α1 + T2α2 (1)

Here,‖•‖0 is the l0 norm, the number of non-zero entries in a vector. Note that due to the structure of the
dictionaries, the transform operators Φi, and the nature of the l0 norm, the optimization problem is more
conveniently posed when we represent our image, and each transformed layer αi, as vectors.

The optimization problem (1) is highly non-convex, and in most cases intractable[2]. Fortunately, it is
possible to solve a related, and in many cases equivalent[4] problem resulting from replacing the l0 norms
with l1 norms. This convexification yields a solvable optimization problem. However, we can only hope
that such a decomposition will be sparse if our image X is indeed composed solely of cartoon and texture
components, and thus can actually be represented sparsely in terms of the dictionaries T1 and T2 . Since
this is generally not the case, we can compensate by including a penalized residual term, assumed to be in
the form of some noise[2]. This results in the below equation, which is the optimization problem[1] actually
solved by MCA:

{α∗
1 , α

∗
2} = argmin ‖α1‖1 + ‖α2‖1 + λ ‖X−T1α1 −T2α2‖22 (2)

where the norms have been changed to l1 norms and the constraint that the transformed components αk

perfectly represent our image has been replaced with a λ-penalized residual term. Solving this optimization
problem, with the right choice of dictionaries, yields a decomposition of an image into cartoon and texture
components.

The MCA algorithm can be reformulated to solve the inpainting problem. Suppose we have a diagonal
’masking’ matrix M ∈ {0,1}NxN , whose entries signify whether or not a given pixel in our true image vector
X has been occluded or not. We are only able to observe the masked image MX, but would like to estimate
the missing entries as follows[4]:

{α∗
1 , α

∗
2} = argmin ‖α1‖1 + ‖α2‖1 + λ ‖M(X−T1α1 −T2α2 )‖22 (3)

which is the optimization problem solved for MCA inpainting. This problem can be motivated from a
maximum a posteriori (MAP) estimation standpoint by viewing the ‖M(X−T1α1 −T2α2 )‖22 term as a
log-likelihood, and the cartoon and texture representations ‖α1‖1 and ‖α2‖1 as prior terms that favor sparse
(low-norm) solutions. In this way, we can view the true image as X = X1 +X2 , but degraded by Gaussian
noise that leads to the log-likelihood term[2].

This MAP estimation structure leads to an EM algorithm that can be used to perform inpainting. In the
EM framework, this is done by computing the conditional expectation of the penalized error (log-likelihood)
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term given the current estimate for full image, and in the M-step optimize each representation vector αi

while holding the others fixed. A sketch of the algorithm for this is as follows[5]:

E − Step : Xest = MX + (I −M)
∑

Tkα
(i)
k

M − Step : α
(i+1)
j = argmin

∑∥∥∥α(i)
k

∥∥∥
1
+ λ

∥∥∥Xest −
∑

Tkα
(i)
k

∥∥∥2
2

for j = 1, 2 (4)

To clarify, in the E-step we are using our observed image MX and our last update for each αk to estimate
the combined texture and cartoon components for our full image, Xest. In the M-step, we hold all but one
α
(i)
k constant, and optimize equaion (4) with respect to that α(i)

k which is not fixed. In each M-step, this
update is performed for all k. This iterates for a certain number of steps in order to attain estimates for α1

and α2 from which we can reconstruct our full image, thus filling in the missing pixels.
At this point, it merits pointing out that this entire formulation requires access to applicable dictionaries

in which our texture and cartoon components can be represented sparsely and with mutual incoherence.
Standard dictionary choices are the curvelet[6] basis for the cartoon components and the local-discrete cosine
transform (LDCT)[7] basis for the texture components. Fast transform and inverse transform operators exist
for both of these bases, allowing projection into each space and reconstruction from coefficients in each basis
during the MCA inpainting algorithm. These are the dictionaries we used in our application of MCA.

The final theoretical extension to MCA that must be discussed for our application is that it can be used
for inpainting multichannel data[3, 8]. Multichannel morphological component analysis (mMCA) extends
mMCA to take into account n m-dimensional observations, for example a color picture or in the case of our
application a sequence of consecutive video frames. Analogous to independent component analysis (ICA),
mMCA assumes independence between sources of pre-mixed data, and attempts to find an unmixing operator
that best separates sources. The difference is that mMCA specifically searches for sparse representations of
the morphological layers with respect to mutually incoherent dictionaries. That is, we attempt to find an
unmixing operator that maximizes sparsity.

3. Methodology

To solve the minimization problem (3) that defines mMCA, we implement the optimization procedure
discussed in [3], which iteratively estimates each αk and the unmixing operator. Supplementary MATLAB
code for our mMCA function, as well as a driver-script and a provisional dataset can be downloaded at
http://www.stanford.edu/~abacker. Our code performs restoration upon two-frame blocks of video data.
For example, to restore frame n, frame n and frame n + 1 are input. Hence, the final restored video had
one fewer frame than the original. Throughout all our experiments, we used curvelet and LDCT dictionaries
to separate relevant image content from texture. We calculate such transforms using functions provided in
the open-source image-processing suite WaveLab. In all experiments, the penalty parameter λ from (3) was
set to the inverse of the estimated standard deviation of the noise in the input images. This estimation was
accomplished by band-pass filtering the input image, and then calculating the variance.

To compare the merits of our method versus other approaches, we perform MCA restoration on individual
video frames as well. For MCA trials, we use the package MCALab[1], which can be found at http://www.
greyc.ensicaen.fr/~jfadili/. In order to acquire a suitable video dataset, we captured a three-second
video clip using an ordinary camera-phone. Each frame was cropped to 256-by-256 pixels, and color was
removed. A synthetic texture was then added to each frame and a random selection of pixels were removed in
order to allow inpainting. For inpainting experiments, we had free choice of how to initialize ’missing pixels’.
We heuristically found that random initializations worked best for our mMCA implementation, while this
practice led to instability and unpredictable results for conventional MCA. The best performance for MCA
occurred when missing pixels were initialized to zero.

4. Results

To demonstrate the efficacy of mMCA, we perform two video restoration experiments. In the first exper-
iment, we restore a black-and-white video clip respectively using mMCA and MCA, and make a qualitative
comparison of results. In our second experiment, we push these algorithms to their limits by investigating
the percentage of pixels that must be supplied to MCA and mMCA in order to yield reasonable restorations.
In this experiment, we determine that MCA needs a critical minimum number of input pixels. If fewer pixels
are given, MCA produces wildly inaccurate restorations. mMCA, on the other hand, exhibits no threshold
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of this sort. Results become increasingly inaccurate as the number of input pixels dwindles, however there
is no point at which the method catastrophically breaks down – a significant achievement over MCA.

4.1. Experiment 1. We include four AVI files to evaluate the respective merits of MCA and mMCA
restoration on a short clip of degraded video. The first AVI shows the original video clip, while the second
clip shows the image after the addition of a degrading texture, and random removal of thirty percent of
the pixels from each frame. The third and fourth videos show the recovered images after applying MCA
and mMCA. Qualitatively, both recovery algorithms perform similarly: while it is difficult to distinguish
meaningful content before restoration, it becomes obvious after applying MCA and mMCA that the video
is of a hand. Furthermore, both algorithms successfully identify and reduce the added texture content. In
general, the mMCA algorithm exhibits slightly more blurring. This is due to the fact that it draws upon
information from two consecutive frames in order to reconstruct individual images. Some representative
frames for both recovery methods are provided in figure 4.1.

Figure 4.1. Video restoration on frames with 40% pixel loss, using MCA (left) and mMCA (right).

4.2. Experiment 2. To quantitatively determine how increasingly high percentages of pixel removal impairs
MCA and mMCA, we selected two consecutive frames from our video-clip (after the addition of a degrading
texture) and repeatedly perform mMCA and MCA on these frames, while removing between ninety-three and
ninety-eight percent of the pixels during each run (again, removed pixels were selected randomly). The total
error in the separated cartoon component ‖Xtrue

1 −Xest
1 ‖2 for both MCA and mMCA is plotted in figure 4.2.

Figure 4.2. Error in catoon compo-
nent for MCA vs. mMCA

This plot provides compelling evidence of major fail-
ure in the MCA algorithm occurring after about
ninety-five percent pixel removal. Around this re-
gion, the recovery error of MCA dramatically in-
creases. On the other hand, the error gradually in-
creases for mMCA, but exhibits no abrupt failure.
Images produced by the two recovery methods, af-
ter removal of 96 percent of the pixels, are shown in
figure 4.3. The MCA algorithm retrieves none of the
relevant content from the original image. However,
mMCA is capable of distinguishing general trends
in the data – such as an oval white splotch super-
imposed upon a darker background. The key reason
for the success of mMCA is more subtle than the
simple fact that it has access to twice the amount of
data. As mentioned previously, we have a number
of options in regard to how to initialize the values of the missing pixels. Normally, initializing missing pixels
to zero works fine for both mMCA and MCA. However, since sparse vectors can be represented sparsely in
the curvelet basis as well, such an initialization strongly biases MCA and mMCA toward extremely sparse
recovered images, if an overwhelming number of the missing pixels are initially set to zero. Hence, when
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Figure 4.3. Video frame restoration for 96% pixel loss using MCA (left) and mMCA (right).

conducting mMCA, it is best to initialize pixels randomly, so that the results are not unduly influenced.
Since there is no correlation between the starting values of missing pixels from one frame to the next, a
random initialization rarely biases output of mMCA unfavorably. The same trick does not work for MCA,
since it has no means of inferring inter-frame correlations (or lack thereof).

5. Conclusions

This report demonstrates a novel application of mMCA to video restoration, which has some advantages
over conventional MCA. In particular, we find that performance is enhanced when a very high percentage
of pixels have been lost. Under less challenging circumstances, when a larger amount of data is available,
both methods produce similar results. Further enhancements to our mMCA algorithm are possible. In the
future, we would like to augment our code to consider more than two successive frames. While such an
improvement may seem trivial, it encroaches upon dangerous territory, since motion blurring in restored
images will increase if the number of input frames to mMCA is large. Hence mMCA could greatly benefit
from methods that adaptively determine the optimal number of frames to provide as input to mMCA,
depending upon the amount of motion which occurs in those frames.
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