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1 Introduction

Current resource allocation methods in wireless network settings are ad-hoc and fail to exploit
the rich diversity of the network stack at all levels. We want to deploy machine learning
algorithms for assigning resources at the access points in Wireless LANs in a real-world
wireless setup, to bring about significant improvements in throughput of the network. The
new IEEE standard 802.11n Multiple-Antenna-Equipped Wireless LAN standard allows for
numerous options at both the PHY and MAC layer of a transmitting wireless node, where a
particular selection of options result in system performance maximization for a given state
of the wireless channel, network, background traffic and user application. Our goal is to
use the Markov model developed for the .11n standard and deploy machine learning tools
to select the option at the transmitting node, from the available choices within the realm
of the standard, that maximizes system performance, within the time limit dictated by the
rate of change of the state-variables. We first deployed Markov decision processes (MDP) to
choose the optimal policy for obtaining the maximize throughput. However, MDPs explore
the entire state space to find the optimal policy (which is a slow process and since our
network conditions keep changing frequently, markov model takes a long time to re-learn the
state transition probabilities). We deployed online algorithms which are much faster. Our
preliminary analytical results combined with MATLAB simulations have verified that our
approach outperforms existing approaches.

2 Motivation

Wireless LANs are popping up everywhere to provide Internet access for the ever-more ubiq-
uitous laptop-toting customer. They are easy to install and they give users the mobility
to move around within a local coverage area and still be connected to the network. Plans
are in place to cover entire cities with WLANs. The WLAN industry, as it is now, with
deployments only in limited places, is over 2 billion with over 100 million unique users. With
a massive widespread deployment expected to hit the consumers in a few years, the numbers
are expected to grow by an order of magnitude or more.

IEEE 802.11 is a set of standards carrying out wireless local area network (WLAN)
computer communication. IEEE 802.11n-2009 is an amendment to the IEEE 802.11-2007
wireless networking standard to improve network throughput over previous standards. Be-
hind most 802.11n enhancements lies the ability to receive and/or transmit simultaneously
through multiple antennas. The 802.11n protocol uses MIMO strategy for communication.
Multiple Input Multiple Output (MIMO) communication is well-known to boost the wire-
less spectral efficiency through spatial multiplexing. At the physical (PHY) layer, advanced
signal processing and modulation techniques have been added to exploit multiple antennas



and wider channels.

The limiting factor in the performance of a WLAN today is resources at the access point.
Current resource allocation methods are ad-hoc and fail to exploit the rich diversity in wire-
less network settings at all levels of the network stack. Maximizing the system capacity,
by selecting the best policy in the WLAN (to increase the data-rate ) is the motivation
behind our project. We developed and deployed Machine learning algorithms for the re-
source allocation problem that seek to have a direct impact on WLAN system performance.
The problem of finding the optimal control policy (amongst the various options available)
to maximize throughput is cast into a Markov Decision Problem (MDP). Our preliminary
analytical results combined with MATLAB simulations have verified that our approach out-
performs existing approaches, but the next step is to try it on a real testbed.

The 802.11n Multiple-Antenna-Equipped Wireless LAN standard allows for numerous
options at both the PHY and MAC layer of a transmitting wireless node, where any set of
options results in system performance maximization for a given state of the wireless channel,
network, background traffic and user application. For a typical WLAN deployment, the
aforementioned state-variables change dynamically and at a fast rate. Our goal is to use
the Markov model developed for the .11n standard [Bia00] and device a Markov Decision
Process to select the option at the transmitting node, from the available choices within the
realm of the standard, that maximizes system performance, within the time limit dictated
by the rate of change of the state-variables. System performance in terms of throughput will
be the criterion for performance.

Based on the work by Giuseppe Bianchi [Bia00], which derived a Markov model for
state-variable change at both the MAC and PHY layers, we do reliable state-estimation
using characteristics of the previously received packets (e.g. signal strength, number of re-
transmissions, packet loss rate, etc.) on top of any relevant header information provided
by the standard. State-estimation for some of the variables can also be done via explicit
feedback from the receiving node, allowed by the standard, furthermore the cost of such
explicit feedback will be included in throughput calculation.

State and action variables used in our model

For the purpose of this class project, we plan to include the following state variables in
our model

• Packet Success Rate: Packet success rate is a good indicator of channel strength,
and is readily available via Ack’s received from the receiving node, or via Ack Timeouts,
whichever may be the case. We need to choose the optimal policy which gives us the
maximum Packet Success Rate i.e. the maximum throughput.

The following actions constitute the action variable set in our MDP formulation

At the MAC layer:

• MAC Layer Packet Frame Length: The frame length of the MAC packet affects
the packet reception probability. Longer frames transport more user-data for the same
header length, however requires good channel quality for a longer duration of time.
The standard provides for 10 different options for MAC frame length.



• User Selection: In a typical WLAN deployment, the transmitting node may be
sending data to multiple receiving nodes. Selecting the right user plays an important
role in overall system performance.

At the PHY layer, the actions are

• Modulation and Coding Scheme (MCS): The 802.11n standard defines Modu-
lation and Coding Scheme (MCS) a simple integer assigned to every permutation of
modulation, coding rate, guard interval, channel width, and number of spatial streams.
The 802.11n standard provides for 8 different options for the MCS. Identifying the MCS
values supported in 802.11n devices is a good way to determine the set of data rates
that can actually be utilized by users WLAN. If the state of the channel is good, MCS
with a higher index ensures a higher data rate.

3 Implementation

3.1 The standard approach - MDP

The problem of finding the optimal action given the state of the wireless network can be
essentially posed as a Markov Decision process problem. We divided the problem of finding
optimal policies for all combinations of the state and individual actions into sub-problems
. To start with, we have assumed a stationary model for simplicity which considers the
wireless channel to be stationary.

We attacked the problem of finding the best policy by deploying the standard approach of
repeatedly gaining experience and learning state transition function P in the given scenario
and then converging to the optimal policy. It is difficult to quantify the gains achieved
as at present the selection is done on an ad-hoc basis by the settings of the network con-
troller and those controlling individual devices in the network. The stability of the approach
assures us that we always select the action corresponding to the maximum throughput.

3.2 Alternate Approach - Online Learning

Though the MDP approach explained is a robust approach to deal with our problem for-
mulation, we observed that in certain conditions it failed to converge and select optimal
actions. This can be attributed to the conditions where the wireless channel is continuously
changing and the experience accumulated by the MDP is not enough to allow it to converge
to an optimal policy. Thus we essentially encounter a exploration problem, which marks
a trade-off between learning time and performance of a MDP - the more time we spend in
exploring the state-action space the better results we get.In wireless networks, the channel is
inherently dynamic due to a number of factors like fading, interference among others which
are not under the purview of the network itself. This motivates us to look for a approach
that does not require a stationary characteristic from the network/channel.

Since we always aim to maximize the throughput by selecting the best action in minimal
time, we decided to use an algorithm which can continuously give us a good action even while
its learning. So we followed the ‘online learning’ approach to find the optimal policy. We
adapt the ’online learning’ to our problem scenario by considering an ordered pair of actions



(a1, a2) and the corresponding change in throughput (∆Th). The change in throughput is
used as a guide to select the next action. Value for the learning rate µ was selected according
to the scale on which throughput was measured (and the sampling time of throughput), so
as to have only scalable changes in the action. We use the fact that in best of the conditions
the throughput is directly proportional to the the MAC layer packet length and the MCS
level.

We do not directly use the current ∆Th value to determine our next action. We average
the value of ∆Th observed over various transitions from a1 to a2 and use this ∆Thavg to
determine our new action. This approach can be translated as the following algorithm.

3.2.1 Online Learning Algorithm

Algorithm 1 Online Learning Algorithm

1: procedure Select-Next-Action(a1, a2, ∆Th) . Action pair (a1, a2)
2: if a2 > a1 then
3: flag = 1
4: else
5: flag = −1
6: end if
7: Using the ∆Th evaluate the value ∆Thavg for action pair a1, a2

8: anew = a2 + flag * µ * ∆Thavg

9: Normalize anew to limit the value within the action space
10: end procedure

4 Simulation

We successfully deployed the above algorithm on the Simulink model. To better visualize
the performance of the algorithm we carried out simulations for the marginal cases in which
the network is stationary. Figure 1 refers to one such case in which we have quasi-stationary
state with fixed MAC layer collision probability = 0.5. Figure 2 lists the average through-
puts observed for each of the possible actions of selecting the MAC Layer packet frame length.

Subsequent to a successful run of the algorithm on the Simulink Model, We are in the
process of deploying the same algorithm on a real Test Bed and plan to submit the results
for publication.

5 Model

The simulation were carried out on a Simulink model. The complete model and related code
can be found at http://www.stanford.edu/∼shreyg/CS229/

6 Collaborator

Rajiv Agarwal (rajivag@stanford.edu), PhD. Candidate (under Prof. John M. Cioffi), De-
partment of Electrical Engineering, Stanford University.
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Figure 1: MAC Layer packet frame length selection with fixed MAC Layer Collision Proba-
bility = 0.5

Packet length 10 20 30 40 50 60 70 80 90 100
Throughput 0 1.15 1.23 1.53 2.16 2.59 2.56 3.00 0 0

Figure 2: Net Throughput values with fixed MAC Layer Collision Probability = 0.5. The
zero values are so because the algorithm learns a negative ∆Th value for adopting these
actions(from any other given action) and hence never adopts the concerned actions
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