
Trying out machine learning tricks in a tactical game

Hanhua Yin

Summary

This is my attempt of applying machine learning to replace pre-defined AI of a tactical

game I created. Instead of using reinforcement learning, I used simple linear regression

(with some extra tweaks), which works reasonably well.

Game

It is a turn-by-turn tactical game (SRPG) on a 2D grid. 2 sides take turns to try to

neutralize units of the other side. A unit undergoes 2 phases during its turn: In

MOVING phase, the unit can move to a location within range. If a unit moves to a

position occupied by a friendly unit, it will mount to the top of that unit. A mounted unit

cannot be attacked by others. In ACTION phase, the unit can either choose to ATTACK,

use ITEM, or REST. See game manual for detailed explanation.

Basic Idea

Let the learner (the entity controlled by machine learning algorithm; “player” and

“learner” are used interchangeably) try to learn to play better against some opponent.1

Control Using Machine Learning

To play better against the opponent, the learner can make predictions about the

opponent’s response to learner’s action. Instead of directly predicting how the opponent

will react, the learner predicts the value of a reward function if it is evaluated at the

beginning of learner’s next turn (that is, after the opponent’s response). The reward

function measures how well the learner is doing under a game state (big reward when

the learner is winning etc). By predicting the future reward, the learner indirectly

predicts the result of the opponent’s reaction. By seeking maximum predicted reward,

the learner seeks an optimal action.

1 Although it is trained against a deterministic AI, the learner does not know how the AI would respond, since the

point is to learn from some unknown opponent.

Example

To be more concrete, here is the example problem I use throughout the discussion and

the one I actually implemented and tested. “Player” units are controlled by machine

learning algorithm. “Enemy” units are controlled by a scripted AI.

Simplifying assumptions used in implementation (to decrease coding complexity) are:

(1) MHP, MBL, and max # of items are the same across all units. This is used to simplify

reward function so that I can cancel a few common terms.

(2) MOV, RNGs, POWs, ATK, DEF, and STR are the same across all enemy units. This is

used to decrease number of linear regression models to consider.

A Close-Up on Reward Function

player player player
1 2 3

ene

4

my enemy enemy

1 1 1
MHP MBL maximum of items
HP+1 BL+1 #_of_items+1#_of_player_units
1 1 1#_of_enemy_units
MHP MBL

_

_#maximum of items
HP+1 BL+1 #_of_items

_
+
_
1

With positive weights 21 3 4 - using assumption (1), this is just

player player player

enemy enemy en

1 2 3 4

emy

1 1 1
1 1 1

HP+1 BL+1 #_of_items+1#_of_player_units
1 1 1#_of_enemy_units

1 1 1
HP+1 BL+1 #_of_items+1

This reward function captures, roughly, how I make decisions while playing this game:

Unit count is the most important factor to consider;
player

1

HP+1 grows quickly as HP of

any player unit approaches zero, decreasing

player

1
1

HP+1
and thus total reward

(denominator term is the opposite); other terms are similar.2

A Close-Up on Training Vector

Since units come and go, and a unit with 0 HP is still active (so that a 0 HP unit is not

the same as a neutralized unit which is removed from the field), it seems natural to use

variable-length training vectors. To handle this, I simply let the program switch among

different models automatically. Using reward function specified in previous section,

reward scales properly among models. Using assumption (2), there are 9 linear

regression models to fit for the example used, producing 9 sets of parameters, which are

loaded to the game.

Outline of Prediction Process

For a unit under learner control, decide the course of action as follows:

1) Backup game state

2) Act according to AI, but write resulting game state to BestState; predict reward using

parameters obtained from linear regression and write to BestReward

2 +1 is used to avoid division by zero. When number of enemy units is zero, maximum reward is outputted.

3) Restore game state from backup

4) Loop over all possible actions:

4a) for each action, get resulting state and predict reward

4b) compare this reward with BestReward: if this reward is bigger, write current state

to BestState and current reward to BestReward

4c) restore game state from backup

5) Copy BestState to current game state, and go to next unit3

Outline of Data Collection Process

Actual Implementation Issue and Extra Tweaks

Actual training data have been obtained by: 1) manually controlling player’s units; 2)

letting (scripted) AI control player’s units; 3) after enough data are obtained, letting

machine learning algorithm take control of player’s units.

Since prediction can be noisy, I initially used a tolerance factor, TOL, so that course of

action is altered only if there’s some action with predicted reward TOL bigger than the

action initially suggested by AI. As more data are obtained, I realized that it is actually

3 This is a sequential algorithm, meaning each unit under learner control tries sequentially to minimize

accumulated relative damage (relative in a sense that this also takes into account damage learner’s unit inflicts to

opponent’s unit during current turn) the opponent could inflict to the learner in next turn, as if the opponent would

act immediately. A sequential algorithm is used since otherwise number of cases to consider can easily grow out of

bound. (Probably OK for current example, but for situation where each side has a lot of units, this is infeasible.)

hampering the performance, so I removed it (set it to 0). This means ML algorithm is

controlling the units without the help of AI at all.4

To avoid getting stuck in a loop forever, unwinnable for both sides, a small positive

bonus is added to predictions resulting from aggressive actions.5

The following tweaks are added to get around of an intrinsic problem of linear

regression (at least in current formulation) – it cannot predict potential reward several

steps in the future:

I added a small bonus for predictions resulting from mounting. Mounting is usually a

good approach to take, despite the fact that it may not yield immediate reward.

I also added a small penalty term proportional to distance between player’s units. So, if

predicted reward does not say much, the units prefer to stick together.

Why It Works

1) from actual performance

As stated in previous section, by setting TOL to zero after some training, ML algorithm

alone takes control of player’s units. It improves AI since there are many situations in

which AI-controlled player cannot beat AI-controlled enemy, while ML-controlled player

beats AI-controlled enemy nicely. 4 set of stage data are attached for reference:

stagea.txt, stage1a.txt, stage2a.txt, and stage3a.txt are AI versus AI versions, while

stage.txt, stage1.txt, stage2.txt, and stage3.txt are the same stages except that ML

algorithm takes control of the player side, winning the game unwinnable by

AI-controlled player previously.6

Of course, improvement is expected only for matches between ML-controlled player and

AI-controlled enemy in a situation similar to the example (i.e., 2 player units, 3 or fewer

enemy units) since training data are based on these assumptions, but it can be trained

to adapt to more general situations.

2) from reasoning

Unlike chess, one rarely needs to think a lot of steps ahead in this game. Most of the

time one step ahead is sufficient. For situations requiring more steps of thinking to play

well, tweaks mentioned in previous section, which provide ML algorithm with some

“general principles”, partially fix this problem, achieving reasonable performance.

4 It still uses AI-suggested action as an “initial condition”, but any initial condition will produce the same result
since in practice virtually no predictions are identical after some training.
5 By the way, a variable bonus, increasing with number of turns, turned out to make units insufficiently aggressive

at the beginning and overly aggressive towards the end.
6 To load a stage into a game, simple run the game (dream.exe) with the name of the stage file as parameter. For
example, to load stage2a.txt, start the game using “dream stage2a.txt”. Once in the game, press any key to enter
the field, and press Q to fast-forward if you wish. Press F10 anytime to reset the game.

