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Project Goal 
 
The goal of this project is to show that it is possible to create a system that can effectively 
predict whether a student will get a problem right or wrong, given the performance of 
other students on a set of problems which contains the target problem and given the 
students performance on the same set of problems minus the target problem.  The reason 
I would find such a system useful is that I plan on making a web site that generates 
dynamic problems sets for my senior project. The idea is that the web site would use 
students history on problems to create customized optimal sets of problems for learning a 
particular topic. Predicting the probability that a student gets a problem right is key to 
developing such a system.  
 
Data 
 
For this project the Grade 7 math problems from the California SAT9 exam were used as 
the problem set. The data is composed of over 400,000 students, each of whom have 
taken 80 problems. 
 
 
Choice of Error Measure 
 
For the predictive system to be effective, it must accurately estimate the probability of a 
students success on a problem, as opposed to predicting a binary value for success or 
failure. This is because, it would be useful when creating dynamic problem sets, to be 
able to specify how challenging a problem set should. Thus rather than just calculating 
the average number of times a prediction is wrong, error should measure the standard 
deviation of the difference between the success and the predicted probability of success.  
A measure of average absolute value of differences promotes a binary prediction while 
using sum of squared errors promotes an accurate estimate of probability. The measure of 
error therefore will be:  

error =  sqrt (∑i:m∑j:n (yHatij – yij))/(m*n)) 
 

where  yHat is the predicted probability of getting target problem right, and  yij is success 
on the ith problem on the jth test (1 if correct, 0 if wrong).  The error is summed over n, 
because each of the n problems is used as a target and over m for each of the m students 
in the sample.  For frame of reference the error generated by simply guessing the mean 
success of the target problem over all students in the training set is shown in the table 
below: 
 
(Note:  The fact that the generalized error was smaller for 
the smallest training sets is idiosyncratic to the training set 
used.  If results were averaged over a large number of 
training sets, this would not have been the case.)   
 
 

Training Generalized Size 
0.4791 0.4898 50 
0.4792 0.4876 100 
0.4742 0.4951 1000 
0.4763 0.4921 10000 



Choice of Model 
 
The focus of this project is feature selection rather than model selection. GDA, SVM and 
linear regression were considered for use as the standard model for the experiments. 
GDA was discarded since the data is not Gaussian and GDA is not recommended when 
the independent variables are categorical. For SVM with a linear kernel, and a Gaussian 
kernel, and a linear regression on the full set of problems the errors were comparable. 
However, since some of the feature selection techniques required manipulating the 
covariance matrix, linear regression was chosen as the standard model fore each feature 
selection approach taken. 
 
Approach 1: Construct Covariance Matrix Using Only K Most Correlated Problems 
 
Motivation 
The motivation behind using only a subset of problems to predict the success on a target 
problem is two fold. First, when the sample size is low, such as 50 or 100 students, using 
all other n-1 problems in the regression will over-fit the data. Secondly, without knowing 
anything about the data it seems possible that some of the problems, even for large 
sample sizes, would not have meaningful correlations to the target problem, and their 
inclusion in the regression would likely increase the generalized error. 
 
Implementation 
Approach 1 was implemented by calculating the correlation matrix from the covariance 
matrix using the formula: x’x where x is the m by n matrix of zeros and ones of n 
problems for m students after mean adjusting each of the n columns.  A correlation 
matrix was then constructed form the covariance matrix, and for each target problem, the 
corresponding column of correlations was sorted to find the most correlated other 
problems to the target. The covariance matrix was then constructed using only the k most 
correlated problems and used to perform a linear regression. 
 
Results 

 
Not surprisingly, the results show that the optimal number of problems to use increases 
with the size of the training set, and of course the results improve as the training set size 
increases.  
 

Num of 
Students 

Min 
Generalized 
Error 

Optimal 
Num of 
Problems 

50 0.4616 12 
100 0.4516 14 
1000 0.4340 39 
10000 0.4294 70 



Approach 2: Interpolated Binning 
 
Motivation 
The motivation for binning is to try and gather as much information about a student into a 
minimal number of features. The previous results appeared to have a substantial 
difference in errors between the sample size of 50 and 10K. The problem may be that to 
get enough information to make an accurate prediction requires at least 10 to 15 
problems, but by this time the regression is already over-fitting the data. Grouping 
students into bins according to the number successes they enjoyed on other problems has 
the advantage of being able to express a lot of information with a small number of 
features. 
 
Implementation 
In the interpolated binning approach, the features of the training set are bins that 
represent how many problems a student answered correctly. The bins receive weights 
according to which one or two bins straddle the number of successes the students enjoyed 
on the other problems. The weights always sum to one and no more than two will be non-
zero.  
 
Results 
 
Bins: 20-40-60-80                    Bins: 20-80      

 
 
 
 
 
 
 

The above data show good results even for small training sets.  For larger training sets 
more bin points are useful, while the smaller training sets benefit from fewer bins. 
 
 
Approach 3: Eigenvector Analysis 
 
Motivation: 
Thus far, I have discovered one approach that appears to work well for large sample sizes 
and one that works well for small sample sizes. It would be nice, however to find an 
approach that works well for both. A good starting point would be to get a better sense of 
the factor structure of the data, and this can be done with an eigenvector analysis. 
 
Implementation: 
An eigenvector analysis was performed on the n x n correlation matrix to get a sense of 
the number of factors influencing correlation between problems. 

Training Generalized Size 
0.4303 0.4494 50 
0.4364 0.4421 100 
0.4211 0.4348 1000 
0.4207 0.4337 10000 

Training Generalized Size 
0.4386 0.4471 50 
0.4418 0.4416 100 
0.4244 0.4378 1000 
0.4236 0.4368 10000 



 
 
Results And Analysis 
 

  
     Fig. 1                                                                                    Fig. 2 

 
From the data (Fig. 1) it would appear as though much of the substantive variance in the 
data can be explained by a few eigenvectors and the rest of the eigenvectors correspond 
to Eigen values that are difficult to distinguish from noise.  
 
To test this hypothesis another eigenvector analysis was performed on the results of a 
randomly generated answer set that shared the same mean value of P for each problem as 
the test data set but had no other structural correlation in common.  For each student, 
success on a problem was assumed to be uncorrelated to their performance on all other 
problems.   This was simulated by sampling from a binomial distribution with the 
appropriate parameter P set to each problem’s mean. Each student was assumed to be no 
different from any other. 
 
The graphs of the Eigen values for the naïve random sampling look very similar to the 
tails of the Eigen value graphs for the actual data, suggesting that many of the 
eigenvectors with smaller Eigen values may simply be capturing spurious correlation. 
 
Next a “smart factor” was added to the naïve random data by making some randomly 
generated students more likely to find success than others. This was accomplished by 
shifting the mean value of all P’s for each student independently.  The shift was drawn 
from a uniform distribution between -.4 and .4, with the resulting probabilities for each 
problem bounded by 0 and 1.  
 
The graphs of the Eigen values for the naïve random distribution with the smart factor 
added (Fig. 2) and the actual data are astonishingly similar. It thus appears that a single 
factor is responsible for much of the predictability in a student’s performance.  In any 
event only the first few Eigen values are distinguishable from those from the randomly 
generated data, except for in the very largest data sets. 



 
 
Approach 3a: Reconstructing Covariance Matrix From K Largest Valued 
Eigenvectors 
 
Motivation: 
Considering that many of the eigenvectors with small Eigen values are difficult to 
distinguish from random, it might be profitable to make predictions without incorporating 
the eigenvectors with small Eigen values into the model.  
 
Implementation: 
Excluding the small valued eigenvectors was accomplished by creating covariance 
matrices using subsets of the Eigen vectors in the following manner.  First, find the 
eigenvectors and corresponding Eigen values of the covariance matrix X transpose X, 
sorted in descending order of Eigen values.  Next set the Eigen values to zero for the k+1 
to the nth eigenvectors, and reconstruct the covariance matrix using the formula CE = 
UΛUT  , where U is the matrix of eigenvectors and Λ is the diagonal matrix of  modified 
Eigen values. Finally, replace the diagonal of the matrix CE with the diagonal of the 
original covariance matrix.  

There are two reasons for this last step.  First, with out doing so, CE would not be 
invertible, because it was created with fewer that n eigenvectors and therefore could not 
have full rank. By replacing the diagonal of CE with one that comes from a matrix that is 
full rank, CE becomes invertible. It also makes sense to use the diagonal from the 
covariance matrix, since we are relatively confident in the variances along the diagonal.  
We can measure reasonably narrow confidence bounds on the diagonal, while off 
diagonal elements are much more volatile.  This makes it difficult to be confident in 
resulting partial correlation coefficients without the use of large data sets.  Finally 
standard linear regressions are performed using the resulting covariance matrices from 
each training set while varying the number of included eigenvectors. 
 
Results: 

  
 
The results show that a single eigenvector should be used for training sets of 50 or 100 
students while the first four eigenvectors are useful for larger training sets. 
 

Num Of 
Students 

Min 
Generalized 
Error 

Optimal 
Num Of 
Eigenvectors 

50 0.4465 1 
100 0.4413 1 
1000 0.4338 4 
10000 0.4321 4 



 
Aside: Comparing Generalized Error of 20-80 Binning To Generalized Error of 
Regression Using Just The First Eigenvector 
After the eigenvector analysis I hypothesized that the first eigenvector may represent a 
smart factor. We can essentially think of the 20-80 as a measure of intelligence, the closer 
a student is to 80 the more intelligent they are. The minimal difference in errors suggests 
that this hypothesis was not far off. 
 
Generalized Generalized Size 

0.4465 0.4471 50 
0.4413 0.4416 100 
0.4375 0.4378 1000 
0.4366 0.4368 10000 

 
 
Approach 3b: Eigen Value Multiplier and Ridge: 
 
Motivation: 
The later part of the graph of the errors for the reconstructed covariance matrix exhibits 
seemingly strange behavior. In particular, in all cases with greater that 50 tests in the 
training set, the regression preferred having all eigenvectors to having all but the last few. 
But the optimal strategy is to just keep the largest one or several.  This result suggested 
that discontinuity in the treatment of eigenvectors of similar corresponding Eigen values 
was not favorable.  It also suggested that even the last few eigenvectors had some useful 
information content.  To address this, two approaches were tried: demotion of Eigen 
values after the kth eigenvector using a multiplier and promotion of the diagonal using a 
ridge multiplier. The ridge multiplier has a similar impact to demoting Eigen values, but 
was less discriminating in that it treats all components of off diagonal elements equally. 
 
Implementation: 
In this approach, the full values of the first k Eigen values are used, but a multiplier less 
than one that depends on the sample size is applied to Eigen values k+1 to n.  Again the 
covariance matrix, CE, is constructed from the altered Eigen values and their 
corresponding vectors.  Finally, a ridge multiplier is applied to the diagonal of the matrix. 
 

 
 
 
 
 
 
 
 
 
 
 
 



Results  
 

 
 

 
Using a single multiplier after the kth Eigen vector and either using a ridge of 1.4 or no 
ridge, generated comparable results and in both cases improved the results achieved by 
zeroing out Eigen values. Notice that the optimal multiplier when the training set is 
10,000 is 1., meaning the only distortion of the original covariance is the ridging. 
 
 
Conclusion 
 
The best approach for all training set sizes was reconstructing the covariance matrix 
using one or several fully weighted eigenvectors and demoting the rest. The optimal 
values for both the demotion multiplier and the number of full valued eigenvectors used, 
makes sense in light of the eigenvector analysis. At small training set sizes the 
eigenvectors corresponding to small Eigen values are likely just capturing spurious 
correlation, while the structure captured by all the eigenvectors is meaningful for large 
sample sizes. It is not surprising then that the larger multipliers and larger number of fully 
weighted eigenvectors were optimal for the larger training sizes.  Using this approach 
seems to be a very robust strategy, because it has mechanisms to incorporate the optimal 
amount of information, avoiding over-fitting the data at low sample sizes and under-
fitting at large sample sizes.  This approach would be especially useful for implementing 
a dynamic problem set system, since the sample sizes for problems is likely to range 
drastically in size. 
 
The other two approaches were not nearly as robust. The sorted correlation approach was 
nearly as effective using 10000 students but was significantly worse at lower sizes. The 
binning approach on the other hand was nearly as effective at small sizes and worse at 
larger sizes. This makes sense since because the eigenvector approach essentially only 
uses the first eigenvector at small sizes, and that single eigenvector appears to be 
capturing the same information as the binning.  
 

Num Of 
Students/ 
Multiplier 

Min 
Generalized 
Error 

Optimal 
Num of  
Eigenvectors 

50 / .05 0.4458 1 
100 / .15 0.4405 1 
1000 / .4 0.4324 2 
10000 / 1 0.4294 3 

Ridge: 1.4 



The results from this project are extremely promising, especially considering the difficult 
nature of making predictions using test data. Test problems are inherently orthogonal, 
since the objective of a test is to test as many points of knowledge as possible with the 
fewest test problems. Thus the problems are unlikely to be highly correlated, making 
accurate predictions harder. In fact, the tail of the eigenvector analysis, which looks very 
similar to a random naïve distribution, suggests that this is indeed the case. Furthermore, 
the SAT9 is a multiple-choice test, and the ability of a student to randomly get a problem 
right adds additional noise. Thus I am hopeful that when I implement these approaches 
on sets of math problems that are highly correlated and are not multiple choice, the errors 
will be significantly lower.  It may be, of course that with a richer correlation matrix, 
other approaches would be even better. But the modified Eigen value approach seems 
likely to be a very good starting point. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


