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Abstract. Depth estimation is an essential component for scene
understanding. With this in mind, we take a novel approach to
3D depth reconstruction which leverages off of the highly structured
nature of our environment. We believe that high level structural
cues, such as planes, edges, and vertices play an important role in
resolving depth ambiguities and attempt to evaluate the significance
of such factors. This approach is partly inspired by the constraint
satisfaction of Waltz’s algorithm in ”Understanding of Line Draw-
ings with Shadows” (1975). Waltz was concerned with finding the
correct 3D interpretation of a line drawing by using the geometric
constraints which connect edges place on each other. But in applying
this method to real images, a number of issues arise. It is not clear
where the 3D discontinuities lie in the image and as a result we can-
not use hard constraint satisfaction to solve for the true depth. We
attempt to distill the basic intuition and capture the geometric re-
lationships between adjacent parts of an image probabilistically and
generate a global depth reconstruction using a CRF. This project is
largely a theoretical exploration of this approach and here we will
specifically discuss the subtask of vertex classification.

1 Model

One of the first questions for this model is how to represent the relationship be-
tween parts of the image and the corresponding 3D patch which we are trying
to estimate. Our initial approach was to subsample the image into a smaller
number of rectangular superpixels which we map to 3D by assigned a depth.
Each superpixel is assumed to be planar and parallel to the image plane. The
advantage of this parameterization is that we only need to estimate one variable
for each superpixel. The drawback is that we need to operate at a reasonably
high superpixel resolution in order to avoid the smoothing of edges which do
not fall on the superpixel grid. This is particularly detrimental to our attempts
to use edge relationships to constrain the depth of these superpixels because we
cannot even explicitly represent edges but rather have only indirect representa-
tion in the form of the depth differences between adjacent superpixels. Though
this approach was a useful first attempt, we have settled upon a slightly different
model.

Each superpixel is now parameterized by a normal vector to indicate orienta-
tion and an offset to indicate distance from the camera origin to the superpixel
centroid. And, instead of rigidly defining the superpixel shape beforehand, we
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use a segmentation algorithm by Ren and Malik [1]. An important property
of this superpixel partitioning is that by oversegmenting the image we expect
to minimize the number of 3D discontinuities which do not fall on superpixel
boundaries at the cost of including many segment boundaries which do not cor-
respond to depth discontinuities. If we wish to use edges as an explicit part
of our model, the presence of these false positives is much less damaging than
that of false negatives. It is worth noting that such an approach assumes a
high degree of approximate planarity in the real world, for it does not capture
smooth depth discontinuities.

Thus we have set of superpixels constrained in such a way to match the
notions of smoothness, colinearity, planarity, and the presence of corners. In
other words, we penalize a possible configuration of superpixel orientations and
offsets depending on whether the configuration respects our estimates on the
presence of edges and vertices. For example, if we had two adjacent superpixels
with identical uniform color and there was no intervening edge in the image, we
would like to constrain any global configuration to assign these two superpixels
similar normals. In the case of vertices, if we had three adjacent superpixels
which met at a perfect ’Y’, and which we had other reasons to believe looked like
a convex corner, we would like to constrain any global configuration to assign
each of the normals to be perpendicular to each other in the correct way. This
report focuses on finding exactly what does count as a good indicator of whether
there exists a certain type of vertex between adjacent segments.

2 Vertices

In our attempt to learn to identify various vertex configurations we consider
only vertices formed by three adjacent superpixels. Though there are many
cases of four intersecting edges and some vertices with even more, we address
the case of three superpixels because it is simpler and because it is not clear that
the predictive benefit of considering such vertices outweighs the computational
costs of introducing larger cliques in the CRF. We also attempt to classify
each edge into one of the following categories: convex, concave, A obscures B,
B obscures A, and phantom (where A and B indicate order as one proceeds
clockwise around a vertex). We will number these vertex labels for notational
convenience so that the set of possible edge labels is {1, 2, 3, 4, 5}Thus each each
vertex can be characterized by a combination of vertex types. With this view in
mind we try to learn how to classify each edge into one of the 125 3-permutations
of edge types.

This yields a simple graphical model for classifying vertices. A simple model
assumes that each edge label is chosen independently which then generates a set
of edge-specific features with some probability distribution, P (Fi|Xi). Thus, the
most likely assignment is just the set of labels which maximize each P (Fi|Xi)
or equivalently, the argmax of:

P ( !X|!F ) ∝ exp(φ1 + φ2 + φ3) (1)
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where φi = lnP (Xi|Fi). However, assuming that the edge features alone dictate
the vertex classification, and that any combination of edges is equally possible,
as long as the edge features are explained by the labels, misses the inherent
constraints on which types of edges may join in a vertex. We know that the
edges do in fact constrain one another, as Waltz’s algorithm demonstrated. To
capture the constraint of consistency between edge labels, we will introduce a
set of vertex-wide features, Fv which is also generated by !X. This yields the
graphical model (b). Thus to classify a new vertex we calculate the posterior
probabilities, P (Fi, Xi) for each edge i and each possible label Xi ∈ {1, 2, 3, 4, 5}
as well as the posterior probability P (Fv| !X) for all values of !X (i.e. combinations
of edge type) and find the value of !X which maximizes their product. Or
equivalently, the argmax of:

P ( !X|!F , Fv) ∝ exp(φ1 + φ2 + φ3 + ψ) (2)

where ψ = lg P ( !X|Fv). However, because it is not clear how much each of
these ψis and ψ should account for our final vertex classification (i.e. how
important vertex wide features are, or how much more useful one edge estimate
is over another), we need to learn weights for these terms. To simplify the
problem, and because of the way in which edge indices get assigned, we have
no reason to believe that edges should be weighted differently and thus we
only need to find the weight for ψ, which we will call θ. To do this, we use
5-fold cross-validation. To compute φi = lnP (Xi|Fi) by Bayes’ rule, we find

(a) Naive Model (b) Consistent Edge Model

lnP (Fi|Xi)P (Xi) which are simply the result of tallies of our training set. And
to compute ψ = lg P ( !X|Fv) we find lnP (Fv| !X)P ( !X) which is also derived from
tallies from our training set. Specifically, P (Fi|Xi) and P (Fv| !X) are given by a
set of gaussian distributions for each labeling Xi or !X fit to the training vertices
whose ground truth labeling matched Xi or !X. One issue arises due to the large
number of vertex classes. We use smoothing to deal with the sparsity of our
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data set and the fact that we do not have observed vertices for all of the possible
edge combinations, and nor should we, as some are geometrically impossible.

3 Features

By the above model, we have two different feature sets: those corresponding
to each edge, Fis, and those corresponding to the vertices Fvs. For the Fvs we
just used coordinates of the vertex and estimates of the angles and lengths (in
number of edge pixels) of each edge. The edge angles were computed by taking
a weighted average of the angle that each edgel (pixel closest to the edge) made
with the vertical. For the Fis we used the edge angle and length as above, an
estimator of edge linearity, an estimator of edge strength, and the differences
and respective values for basic statistics of the adjacent superpixels. To estimate
linearity we used the absolute value of the covariance of the edgel coordinates.
To estimate the edge strength we took the mean color difference between adja-
cent pixels which belonged to different superpixels. We had initially used a large
set of randomly sampled templates with which we took the cross correlation for
various points associated with the edge, but these cross-correlations were ex-
tremely time-consuming to compute and we do not have sufficient labelled data
to test the features and have been left our in our initial model.

4 Results

With respect to the vertex classification we do not have meaningful results for
their effect on the global depth estimation. Nor do we have valuable results for
just the classification of vertices we are finding. The data set must be labelled
by hand and moreover must be reasonably well balanced across different edge
and vertex classes which has made getting enough data to meaningfully predict
a 125 class classifier exceedingly difficult. We are still largely predicting the
most frequently occurring vertex type across all actual vertex classes.

5 Future Work

For one, it has become apparent that using a data set with ground truth depth
maps might be valuable in allowing automatic labeling of much larger training
sets. Additionally, the current data set is largely for outdoor images, which
makes certain vertex types very rare (such as convex-convex-convex). More-
over, once we can evaluate the effect of vertex classification on the global depth
estimates, we can experiment with various segmentations will change the clas-
sification accuracy of vertices but which may improve the overall depth recon-
structions. Also, there is still a fair amount of work to be done in exactly how
to build potentials given information about vertex types. This will amount to
implementing some of the actual constraints used in Waltz’s algorithm.
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