
1

CS229 Project Report:
Improving Search Engine For A Digital Library

Farnaz Ronaghi Khameneh
farnaaz@stanford.edu

Abstract— This project introduces a novel approach for
using click through data to discover clusters of similar
queries and similar URLs. One can simply observe that
users reformulate their queries to find a desirable result.
We define this sequence of queries as a query chain. Our
data set consists of records containing user id, query term,
query date and time, clicked item URL and clicked item
rank if there exists one. Viewing this data set as a bipartite
graph we perform a graph-based agglomerative clustering
to find similar queries and similar URLs. We intend to use
human intelligence in expressing his information need as
a prior knowledge in agglomerative clustering which will
result in an earlier convergence and a noticeable improve-
ment in whole system performance. We also describe how
to validate this model and how to use query-URL clusters
in a real-world search engines.

Index Terms— Machine Learning, Information Re-
trieval

I. I NTRODUCTION

Textual information in our digital library, Library
of Congress, forms a massive unstructured data set.
With the increasing size of data available in such
library, there is an acute need for automatic methods
to organize data. Most text clustering algorithms
represent document as vectors in a high dimensional
space and they put them together in a cluster ac-
cording to a distance measure [6]. The algorithm
that we use for query-URL clustering is basically
content ignorant. Similarity measures based on Co-
occurrence information from query logs lead the
clustering technique [1].

Intuition behind using agglomerative clustering
is based on two observations. First, users express
their information need with different terms but they
may select the same URL as the most relevant
result. This shows that these two different queries
are expressing the same information need. Second,
users may search for same query but click on URLs
which seem to be totally unrelated using measures
like cosine distance; using latent information in

query logs will assist in finding this set of related
URLs.

As users search, it is well documented that they
try to reformulate their queries instead of switching
to a new search engine [2]. We call Sequence of
query reformulations, a query chain. To the best of
my knowledge researches have considered queries
independently for ranking judgments. [7] uses query
chains to rerank search engine results by extracting
implicit preference judgment from clicked items in a
query chain, they assume to have the top ten results
returned by search engine which is not available in
our data set.

The key contribution of this work is recognizing
that we can successfully use evidence of query
chains that is present in search engine log files
to enhance graph based agglomerative clustering,
and improving it with a more reasonable similarity
measure. In section II we will propose a method
to extract query chains automatically from a search
engine log file. Section III will talk about agglom-
erative clustering algorithm. Section V and IV will
give experimental results and discuss various uses
of this technique.

II. EXTRACTING QUERY CHAINS

In order to make use of human intelligence to
express his information need, we should be able to
detect query chains. In this section we propose an
algorithm for automatically extracting query chains
and judge its effectiveness.

[7] uses the simple heuristic that any two queries
from the same user which follow each other in
less than 30 minutes are in a query chain. Another
approach for detecting query chains is training an
SVM which needs labeled data. In [7] researchers
have manually detected query chains in a log file
containing 1285 queries. They have used these
chains as a basis for comparing different evaluation

2

methods. They have trained an SVM using feature
vector parameters as described in table I.

TABLE I

PARAMETERS TO TRAIN AN SVM FOR DETECTING QUERY

CHAINS.

CosineDistance(q1, q2)

CosineDistance(doc ids of r1, doc ids of r2)

CosineDistance(abstracts of r1, abstracts of r2)

TrigramMatch(q1,q2)

ShareOneWord(q1, q2)

ShareTwoWords(q1, q2)

SharePhraseOfTwoWords(q1, q2)

NumberOfDifferentWords(q1, q2)

t2− t1 ≤ {5, 10, 30, 100}
secondst2− t1 > 100 seconds

NormalizedNumberOfClicks(r1)

Using five-fold cross validation for Comparing
their 30-minute heuristic and trained SVM with
respect to query chains extracted manually, SVM
training out performs the heuristic algorithm only
for 4 percent. Computing this feature vector for
every pair of queries is so expensive, so using the
simple heuristic will be more reasonable.

Using 30-minute heuristic will result in grouping
lots of unrelated queries in the same query chain.
Users may search for another topic without any
noticeable time gap between the two. To avoid this
problem we add a new simple heuristic. We find
the common longest subsequence (LCS) of the two
query terms, if the result was larger than a preset
threshold we will add them to the same query chain.
To extract query chains we make a graph of query
terms. There will be a link between two terms if
they satisfy 30-minute heuristic and LCS conditions.
Query chains are the connected components of this
graph.

III. A GGLOMERATIVE GRAPH-BASED

CLUSTERING

Clustering queries submitted to a search engine
appears to be a very explored task. Query clustering
has been used in personalizing search, query sugges-
tion modules and spell correction tasks. Researches
on user behavior show that most users try to re-
formulate their queries in a search engine instead
of switching to another search engine. Moreover

study of search engine usage patterns shows that
have begun to rely more on one-word queries and
expect search engines help them in finding their
actual information need.

Clustering URLs becomes useful in personalizing
search engines. Researches have been investigating
the more general problem of document clustering. In
this group of algorithms documents are represented
as vectors in a high dimensional space.Hierarchical
and flat clustering algorithms place documents in
the same cluster based on a distance measure in this
space. In this project we are going to use a graph-
based hierarchical clustering proposed in [1] with
a more reasonable similarity measure. According to
[1] content-aware algorithms may fail in clustering:

• Text-free pages: distance functions based on
the vector representation of documents fail on
documents which only contain images

• Pages with restricted access: Pages may be
password protected and their content unavail-
able to a clustering algorithm.

• Pages with dynamic content: A clustering al-
gorithm based on content is more susceptible
to placing these URLs in the same cluster

The most important advantage of agglomerative
clustering proposed in [1] is that it is content
ignorant, URLs are placed in the same cluster based
on co-occurance measures. It is not vulnerable to the
problems given above.

Algorithm proposed in [1] starts by making a
bipartite graph of queries as white nodes and URLs
as black node. There will be a link between a query
and a URL if at least one user has clicked on that
URL as the relevant result for the corresponding
query. Intuitively if we defineN(x) neighborhood
of x and N(y) neighborhood ofy, similarity of
two nodesx andy should be proportional toN(x)
and N(y) overlap. The basic similarity measure
proposed in [reference] is as follows:

σ(x, y) =
|N(x) ∩N(y)|
|N(x) ∪N(y)| (1)

To use this graph to discover separate clusters of
queries that express the same information need or
URL clusters that contain URLs related to similar
information needs, [1] propose the following algo-
rithm:

Agglomerative Iterative Clustering

1) Score all pairs of white vertices according to
equation 1

3

2) Merge the two vertices with the largest simi-
larity measure

3) Score all pairs of black vertices according to
equation 1

4) Merge two black vertices with the largest
similarity measure

5) exit if convergence criterion holds else go to
step 1

At first glance it might not be clear that why
an iterative approach is necessary. In figure 1 after
merging vertices 1 and 2, vertices A and C will sud-
denly be similar refer to 2. This iterative approach
discovers hidden information faster.

2

b

c

a 1

Fig. 1. Necessity of Iterative Clustering

1’b

c

a

Fig. 2. Necessity of Iterative Clustering

Similarity between vertices will lie between zero
and one. One of the major problems with this
similarity measure is that it does not distinguish
between two vertices having exactly the same neigh-
borhood and vertices having exactly the same two
neighborhood. the second problem is that merging
two clusters will result in deleting repeated vertices
which destroys valuable information about vertex
worth in clusters. We can give weight to vertices
in a cluster according to the number of times they
appear in that cluster. Vertex repetition in clusters
shows closer relation cluster and vertex. URL’s
many repetitions in a cluster representing a spe-
cial information need, discloses a close relationship
between the URL and regarding information need.

We use this information to make equation 1 as the
sum of intersection members’ weights over the sum
of union members’ weights. This information can
further be used for reranking search engine results.

Exploring search engine log files, we found a
large number of queries with no selected item URL.
These queries happen so often, they are either a miss
spelling or user’s inability to express his information
need. These will result in having isolated vertices
in our bipartite graph. Agglomerative clustering
algorithm will be unable to place them in any of
the resulting clusters as long as there is no co-
occurance information about them. Here is the time
where query chains show their ability in using
human intelligence. Using our prior knowledge on
user query reformulations, we will merge all query
vertices in the same query chain. This will eliminate
isolated vertices. Further more it will result in earlier
convergence of agglomerative clustering algorithm.

IV. U SAGE

Clusters resulting from agglomerative clustering
algorithm either represent queries expressing the
same information need or URLs which are related to
the same information need. Noticing to the fact that
query reformulations can result from misspellings.
Query clusters can be used for spelling correction
purposes.

On the other hand queries in the same cluster
represent the same information need. We can use
this fact in making query reformulation suggestion
systems. [1] used clusters for this purpose and com-
pared their result with existing suggestion system by
using user implicit feedback.

We use the resulting query and URL clusters for
reranking search engine results. The scenario is as
follows:

• User searches for a new term.
• Assign user’s search item to one of existing

query clusters.
• Retrieve basic search engine results.
• Delete all URLs in the associated URL cluster

from basic results.
• Rank URLs according their weight in associ-

ated URL cluster.
• Add ranked URLs on top of basic search en-

gine results.
Assigning user’s search term to one of existing

clusters has a great impact on final ranking. First

4

we compute LCS for query term and all terms in all
clusters. We choose the term having maximum LCS
as the cluster representative. We select the cluster
for which LCS of its representative and query term
is maximum. Intuitively ranking URLs in associated
cluster according to their weight and adding them
to the top of search engine basic results will end
in a better ranking. As long as we know queries
in the associated cluster are the best matches with
user information need. Further more their weight
is a good clue of how close they are to user’s
information need. We expect this system result in
more user satisfaction.

V. EXPERIMENTAL RESULTS

This report was supposed to introduce an algo-
rithm to improve a digital library search engine.
The library under study is Library Of Congress, a
governmental library. There exist specific law for
disclosure of its’ query log information. We have
used AOL search engine published data. It is very
huge data set consisting of ten files. We use one
file for training and one file for testing, statistics
on training data can be found in table II. These
query logs are unfiltered, we have filtered them to
eliminate objectionable data.

TABLE II

STATISTICS ON TRAINING DATA

Number of queries 3616245

Number of query chains 620155

Number of terms 1229209

Number of URLs 386295

Standard ways of testing user satisfaction from
ranking functions always involve running a public
search engine for some months. Ask users for
explicit judgements or extract judgments implicitly
from deployed search engine log files[5], [3]. We
didn’t have time to do so. We have a novel approach
for comparing our model to the basic agglomerative
clustering algorithm.

We use one of search engine log files as a virtual
online search engine for testing proposed ranking
approach. We have the following information about
each query in the log file. If user has clicked on any
item, we know that item and its rank. If user has re-
formulated his query we have his query chain so we

know which URLs he has clicked on. According to
the fact that reformulating queries most of the time
is a means for expressing unsatisfied information
needs, it is reasonable to give more score to URLs
clicked on at the end of a query chain[4]. So our
testing approach will be as follows:

• Retrieve a new query from log file.
• Find its chain.
• Assign it to one of query clusters according to

proposed mechanism.
• Rank associated URL cluster members accord-

ing to proposed approach.
• Give one score if clicked items have better

rank in proposed approach along with paying
attention to the rules given above

This method for testing can only determine num-
ber of times that one algorithm outperforms the
basic search engine’s approach based on given
assumptions on use behavior. Without having an
online search engine and logging user’s implicit
feedback by methods proposed in [5], we can not
tell anything about actual user satisfaction in each of
two approaches. Although our method can compare
user satisfaction in different methods. Using this
approach our results are given in table III. Applying
our method of testing basic agglomerative clustering
improves user satisfaction 40 percent, adding query
chain information will improve our result to 48 per-
cent and enhancing similarity measure for clustering
algorithm will improve result to 52 percent.

TABLE III

EXPERIMENTAL RESULTS.

clustering proposed in [ref] 65%

add query chain information 73%

improve similarity measure 76%

According to our unusual method of evaluation,
in some cases we can not say that we definitely have
improved search engine ranking. Noticing that 80
percent of users only view the first two result pages,
we can claim that as a whole we have improved
user satisfaction on these two pages. We view results
that are clicked URLs mostly having a rank between
one to ten in basic search engine ranking. On the
other hand these results have been proved to be
related to user’s information need. As results show
it is reasonable to claim we are improving user
satisfaction in terms of ranking results. We believe

5

testing this approach with standard measures prove
it to be affective and will give more meaningful
results on its performance.

VI. CONCLUSION

In this project we used two heuristics to find
sequences of user query reformulations named as
query chains from search engine log files. We made
a bipartite graph from query terms on one side
and URLs on the other side. We ran a graph-
based agglomerative clustering along with a more
reasonable similarity measure to find clusters of
URLs and clusters of query terms. Clusters of query
terms depict various formulations of an information
need. On the other hand, clusters of URLs consist
of URLs related to the same information need.
Using these facts along with historical studies of
user search behavior, we showed a way to improve
user satisfaction mostly in terms of ranking.There
are lots of queries for which our basic search en-
gine did not return any satisfactory result. Whereas
by using this method we are returning are URLs
which are expected to be the most related to user
information need and in some sense we can say we
are improving precision.

The key contribution of this project was under-
standing the fact that our prior knowledge on query
chains can make a major improvement in agglomer-
ative clustering algorithm. This can be used in many
application for improving search engine results.

VII. A CKNOWLEDGEMENTS

Author would like to thank Amin Saberi for
his guidance throughout this project, and Nathan
Sakunkoo for his suggestions on data set.

REFERENCES

[1] Doug Beeferman and Adam Berger. Agglomerative clustering
of a search engine query log. InProceedings of the sixth ACM
SIGKDD international conference on Knowledge discovery and
data mining, pages 407–416. ACM Press, 2000.

[2] Andrei Broder. A taxonomy of web search.SIGIR Forum,
36(2):3–10, 2002.

[3] Charles L.A. Clarke, Maheedhar Kolla, Gordon V. Cormack,
Olga Vechtomova, Azin Ashkan, Stefan Büttcher, and Ian MacK-
innon. Novelty and diversity in information retrieval evaluation.
In SIGIR ’08: Proceedings of the 31st annual international ACM
SIGIR conference on Research and development in information
retrieval, pages 659–666, New York, NY, USA, 2008. ACM.

[4] Laura A. Granka, Thorsten Joachims, and Geri Gay. Eye-tracking
analysis of user behavior in www search. InSIGIR ’04: Proceed-
ings of the 27th annual international ACM SIGIR conference on
Research and development in information retrieval, pages 478–
479, New York, NY, USA, 2004. ACM.

[5] Thorsten Joachims. Evaluating retrieval performance using
clickthrough data. InIn Proceedings of the SIGIR Workshop on
Mathematical/Formal Methods in Information Retrieval, pages
79–96, 2002.

[6] Christopher D. Manning, Prabhakar Raghavan, and Hinrich
Scḧutze. Introduction to Information Retrieval. Cambridge
University Press, July 2008.

[7] F. Radlinski and T. Joachims. Query chains: Learning to rank
from implicit feedback, 2005.

