
Single Vehicle Job Scheduling Using Learning Algorithm

Yongkyun Na, 005504660, cutepro@stanford.edu

1. Introduction & Motivation

In the manufacturing line, there is a material handling system which transfers an

item from one machine to other machine. One of the simplest material handling systems

is RGV(Rail Guided Vehicle) system. In this system, RGV moves only backward and

forward on the guided rail and it executes the job which consists of two location

information; 'From location', 'To location'. When the RGV gets a job, it moves to the

'From location' first and pickup the item from the machine and moves to the 'To

location' and deposit the item to other machine. This is one job cycle.

Given N jobs in RGV system, the goal of this problem is finding the best candidate

for the next job among N jobs in the real-time. Since the total processing time depends

on the number of jobs and the computation of this problem is N factorial, this is NP-

hard problem. The RGV has to decide the next job in the real time but generally, NP-

hard problem is very difficult to find a solution in the real-time when N is large.

 There are several approaches for NP-hard problem using heuristic method but I

would like to solve this problem using machine learning algorithm. The idea for this

problem is the relationship between previous optimal solution and new optimal solution.

Intuitively, when a new job comes, we can recognize that the new optimal sequence

does not fully change. So, there is unknown relation mechanism which is difficult to

build a model mathematically. Thus, I will train this relation using learning algorithm and

get a close optimal solution in the real-time from the learning module.

2. Problem Define

First, I defined a simple model for this problem. RGV has only one buffer.

Equipment has input port and output port. Total length is 90m and equipment interval is

30 m as shown in Fig1. For simulation, I will fix the RGV velocity as 2.5 m/s, unloading1

or loading 2 time is 10 seconds. In this case, new job 3 occurs starting from any

equipment with fixed job cycle4.

0 90 m

RGV

EQ
60m

1

2 4 60m

3

Fig.1 System Layout

When the RGV completes a job at certain time, it has to decide the next job among

N jobs. Thus, we need to find out the best candidate for the next job while minimizing

the total delivery time.

There are 4 equipments in the layout. The number of total possible job types is

42=16 because the job consists of two locations and it also allows self-location

transferring. The RGV can not have the same job type at the same time, so the

maximum number of the jobs that RGV could hold is 16. Thus, we have to consider 16!

=20922789888000 cases for the worst, which is impossible to compute in the real-time.

 RGV Job Queue

From To

EQ1

EQ2

EQ3

EQ4

EQ2

EQ1

EQ4

EQ1

…

Job

1

2

n-1

n

n! Job Sequences

The First

Job

Assign

Sequence

The Best

Find

Fig2. Problem Difficulty

1 unloading means moving transfer unit, which is a carrier or wafer, from equipment to RGV
2 loading means moving transfer unit from RGV to equipment
3 job means each transfer command
4 job cycle is job occurrence interval which is 30, 25, 20,… seconds

3. How to solve this problem?

To solve this problem, I used the learning algorithm. The idea of this problem is the

fact that the maximum number of the job types is fixed when the number of equipment

is given. Thus, if we train the learning module with all possible jobs that the RGV could

have, then it is possible to compute the optimal job using this module in the real-time.

Learning

Module

X={0,1}^16

Current Jobs
The Optimal

Next Job

Learning

Module

Learning

Module

Learning

Module
RGV Location

Y={0,1}^4= 1~16

Train

Fig3. Modular Learning Module

Even though the RGV has the same jobs in different time, the optimal next job

depends on the RGV current location. Therefore, to get better learning results, I build a

modular learning module. For each RGV location, we will have different learning module.

In other words, since we have four equipments and RGV only stops in front of those

equipments, we will have four learning modules for this layout.

To collect training data, I implemented simple DP(Dynamic Programming) algorithm ,

which has almost optimal sequence but not real-time. Then, I generated the training

data using this algorithm for the generated sample job scenario.

 The input vector X=[0,1]16 represents the jobs that the RGV has to consider. Each

bit indicates n-th job type existence. For instance, [101000000001] means that the

RGV has three jobs (type1, type3 and type16). And the output vector Y=[0,1]4

represents the next job that the RGV has to take. For example, [0011] means that the

RGV will work type3 job in the next.

 For learning module, I tried neural network and k-nearest neighbor classification

algorithm. Since the generalization error of k-nearest neighbor classification was less

than neural network, I used k-nearest neighbor classification for this learning module.

4. Data Analysis

For the real-time algorithm comparison, I implemented FCFS (First Come First

Serve), NJA (Nearest Job Assign) algorithms. FCFS is an algorithm which assigns the

oldest job to RGV. This algorithm is easy to implement and normally used when the

number of jobs is very small. NJA is an algorithm which assigns the nearest job from

the current RGV location. Since this algorithm only needs the comparison of the current

jobs, it is fast and efficient in simple layout system.

As a performance criterion, I used ‘Mean Delivery Time’. The delivery time is the

total time until RGV has completed a job since a job occurred.

Unit[sec] FCFS NJA LA DP

Training

(100Jobs)
1025.7 426.8 418.8

 418.2

Training

(500Jobs)
4864.4 1648.1 1645.2 1717.4

Generalization

(100Jobs)
1101.5 465.8 509.6 446.5

Generalization

(500Jobs)
5204.3 1636.7 1854.6 1624.4

Delivery Time = Waiting + Total Moving + Loading + Unloading

 Fig3. Training Error Table.1. Algorithm Comparison

As we can see in the Table.1, for training scenario, LA (Learning Algorithm) has the

best result among the real-time algorithms. The result of LA is very close to or even

better than the result of DP which is not real-time algorithm. On the other hands, for

other scenarios, the NJA has better result than LA. I will discuss this more specifically

in conclusion part.

0

1000

2000

3000

4000

5000

6000

1 2

FCFC

NJA

LA

DP

0

1000

2000

3000

4000

5000

6000

1 2

FCFC

NJA

LA

DP

100 Jobs 500 Jobs 100 Jobs 500 Jobs

Fig5. Generalization Scenario Case Fig4. Training Scenario Case

5. Conclusion & Future work

First of all, this learning model had large generalization error, which is 16.7%. The

reason is because I used small training examples. However, this is necessary for less

computation in large search space. In addition, the purpose of this algorithm is not

reducing generalization error but is to have real-time computation and close optimal

solution. In other words, it is ok if the performance is better than other real-time

algorithm.

Despite the above argument, the result of proposed ‘Learning Algorithm’ method

was not better than ‘Nearest Job Assign’ method. Finally, it turns out that ‘Nearest Job

Assign’ method is almost optimal for this simple layout. Thus, for future work, we need

to extend and apply this method to more complicated layout such as multi-vehicle,

multi-buffer and more equipment. Then, the performance of the proposed algorithm will

be better than NJA.

For future work, another possible area to apply learning algorithm for this problem

is the next job prediction. Actually, there are several frequent job types in the real

system. So, if we predict the next job patterns by learning algorithm, in the view of the

global optimal, I can get better solution. Concerning the training for future job prediction,

we can apply reinforcement learning through the feedback from the real result as time

goes by.

