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A large and growing body of user-generated reviews is available on the Internet, from product 
reviews at sites like Amazon.com to restaurant reviews at sites like Yelp.com. For users making 
a purchasing or dining decision, the opinions of others can be an important factor. Although 
some aggregate information -- like average-star ratings -- for multiple reviews is sometimes 
available, in general the only way to determine common views among users is by reading 
through many reviews. As the number of reviews for a single product or restaurant becomes 
large (on the order of hundreds), it becomes increasingly impractical to read every review. 
Some techniques are commonly employed to compensate for this, such as ranking reviews by 
usefulness, as determined by readers. Since readers are most likely to read only the top-
ranked reviews, however, this approach likely leads to a reinforcement of existing useful 
reviews, while relegating new, unread reviews to the bottom of the list.    
 
A more sophisticated approach, and the focus of this paper, is to apply machine-learning 
techniques to the problem. The goal of reading multiple reviews is viewed to be determining 
the most common specific opinions of reviewers, and informally, we wish to let a machine 
exhaustively read every review for a product or restaurant and automatically find cohesive 
groups of opinions that are both closely related and widespread. Formally, we can break the 
problem into two concrete machine-learning tasks: (1) apply supervised-learning techniques to 
classify each sentence in every review as either opinion or non-opinion and (2) for all sentences 
classified as opinions, apply unsupervised learning techniques to cluster those that are closely 
related.  
 
The remainder of this paper describes the system proposed to achieve this goal. Following a 
description of the corpus used to test the system, implementation details, test results, a 
discussion of their meaning, and conclusions will be given.    
 
Corpus 
 
For the purposes of this project, the corpus consisted of diner-generated restaurant reviews 
available at Yelp.com. Reviews were collected exhaustively for 6 restaurants. Reviewer names 
were discarded. Each review consists of a star rating (1 to 5) and the body of the review. 
Statistics are shown below in Figure 1. 
 

Figure 1. Corpus Statistics 
 

Restaurant Total 
Reviews 

Total 
Sentences 

Length Range 
(words) 

Average Length 
(words) 

Coi 139 2556 6-804 240 

Cortez 326 3920 2-810 154 

Evvia 332 3777 2-832 137 

Pesce 243 2320 7-825 117 

Plouf 343 3406 1-693 122 

Tamarine 348 3802 5-856 130 

 
Training data for classification was obtained by sampling without replacement 1210 sentences 
(approximately 6%) from the corpus and manually labeling each as opinion or non-opinion. 
 
Implementation 
 
In order to achieve the objective of finding common opinions across multiple reviewers, the 
processing pipeline of Figure 2 is proposed. Each major stage of processing including sentence 



parsing, Naive-Bayes classification, K-means opinion clustering, and cluster ranking, is 
described in more detail below.  
 

Figure 2. Processing Pipeline 
 

 
 
 
 
 
 
 
 
 
 
 
 
Review Parsing 
 
A sentence is considered to be a sequence of one or more words delimited by a period, 
exclamation point, or question mark. Sentences are tokenized on white-space after case-
folding and removal of non alphanumeric characters. 
 
Opinion Classification 
 
The first stage of the processing pipeline requires classification of sentences into either the 
opinion or non-opinion class. Because it is relatively simple and often competitive with more 
complex classifiers for text applications, a Multinomial Naive-Bayes classifier with Laplace 
smoothing was chosen for implementation. The input feature for each sentence is an 

! 

N -
dimensional term vector, with 

! 

N  equal to the size of the dictionary over the entire training set. 
Thus, element 

! 

i  in an input vector contains the raw term count for term 

! 

t
i
 in the dictionary. 

The training and testing algorithms are implemented as detailed in the lecture notes and they 
will not be repeated here.  
 
Also, in an attempt to compensate for our skewed training data (only 34% of examples are 
labeled opinion), an alternative Complement Naive-Bayes (CNB) classifier, as described by 
Rennie et. al [1], has also been implemented.  
 
Opinion Clustering and Ranking 
 
The next stage of processing requires finding common opinions among the set of opinions 
output by the classifier. Again, for simplicity and because it often produces good results, an 
implementation of the 

! 

K -means clustering algorithm was chosen. As usual, input is the set of 

! 

m  opinion vectors, where each is normalized and of dimension equal to the size of the 
dictionary over all reviews from a single reataurant: 
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The iterative algorithm to produce 

! 

K  clusters from the 

! 

m  input vectors is implemented exactly 
as detailed in the lecture notes, and only the relevant notation is reproduced here, for clarity: 
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c
(i) = cluster assignment for opinion vector 
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µ j  = cluster centroid 
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j 

 

Sentences 

Clusters of 
Opinions 

Top-Ranked 
Clusters 

Naive-Bayes 
Classifier 

 

Reviews 

Non-
Opinions 

Opinions K-Means 
Clustering 

 

Ranking 
Algorithm 

 

Parser 

 



Because we do not know, a priori, the optimal value of 

! 

K , we need a way to evaluate the 
quality of the clusters produced by the algorithm for a given value of 

! 

K , and then choose 

! 

K  
such that the quality of the clusters is maximized over some reasonable range of 

! 

K . For this 
specific application a cluster of high quality is considered to be one that contains many 
opinions, tightly grouped around the centroid. Formally, the quality of cluster 

! 

j  is measured as 
the product of inverse residual sum of squares (or RSS, a standard measure of internal cluster 
quality [2]) and cluster cardinality: 
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Thus, large clusters of unrelated opinions have low quality, as do very small clusters of closely 
related opinions. Having obtained cluster assignments for the optimal value of 

! 

K , each cluster 

! 

j is then ranked on the basis of its quality 

! 

Q j( ) . 
 
Results 
 
First, results for the Naive-Bayes classifier are presented. Ten-fold cross-validation test-set and 
training-set error as a function of the number of training examples, 

! 

m , is shown in Figure 3. 
Note that the alternative CNB classifier had nearly identical performance, so the results are 
omitted. 
 
It’s also informative to look at the top 10 words with the highest predictive value for the 
opinion class: 
 

excellent, loved, those, atmosphere, yum, best, setting, slightly, leaving, client 
 
There are two important means of evaluating the results of the clustering and ranking 
algorithms. First, we can observe how the average quality measure changes as a function of 

! 

K . 
These results are shown in Figure 4. Second, we can manually inspect the top clusters (after 
ranking) for optimum 

! 

K  produced by the algorithm to assess how well they represent common 
opinions. We save this for the discussion.  
 

Figure 3. 10-Fold Hold-Out Cross-Validation Error vs. Training Set Size  

 



Figure 4. Average Cluster Quality (Q) vs. Number of Clusters (K) 

 
 
Discussion 
 
As Figure 3 makes clear, classifier performance is poor. Even in the best case, 10-fold cross-
validation test-set error is 21.9%, while training-set error is around 11.8%. Because both 
forms of error are relatively high, even for increasing training-set size, the classifier likely 
suffers from high bias, probably due to our choice of term frequencies alone as features. There 
are several important observations to make about the nature of the classification problem that 
might help explain the poor performance. First, unlike related sentiment-classification problems 
[3], we are trying to classify short sentences, consisting of few words, so there is very little 
evidence for the sentence belonging to either class. Second, it was probably unrealistic to 
expect opinion to be highly correlated with word features alone. There are clearly cases where 
strong words like excellent, loved, and yum (from our top-10 list) easily predict opinion, but in 
general the expression of opinion is quite nuanced, and the true sentiment of a reviewer might 
be implied rather than explicit. Even hand-labeling the training examples was sometimes 
difficult, as the distinction between opinion and non-opinion was unclear. Taking into account 
these and other challenges, such as the presence of sarcasm, it seems that a more 
sophisticated set of features is needed for good classification. 
 
In contrast to the difficulty of classifying opinion, the results of 

! 

K -means clustering are very 
promising. First, looking at Figure 4, we see that for all restaurants, there exists a clear peak in 
average cluster quality as a function of 

! 

K . Additionally, the shape of the plots makes sense, 
with quality initially increasing as the model more closely fits true clusters in the data and then 
sharply falling off as 

! 

K  becomes too large and good clusters start to fragment.  
 
Furthermore, when we examine top-ranked clusters for each restaurant, many seem to be 
useful in that they indeed contain closely-related opinions that are expressed by many 
reviewers, although there are frequently non-opinion sentences in the clusters as well, due to 
the poor performance of the classifier. Several examples of top-ranked clusters are provided in 
Figure 5.   

 
 
 
 
 
 



Figure 5. Examples of High-Ranking Clusters 
 

Highly-ranked cluster of 21 opinions 
on sea-bass dish from restaurant 
Evvia (K=80) 

Highly-ranked cluster of 8 opinions on 
mahi-mahi dish from restaurant Plouf 
(K=120) 

- Sea bass - Very light but had 
the right amount of flavor 
- We ordered the striped sea bass, 
the moussaka, and the lamb chops 
for our entrees 
- The striped sea bass was served 
on a bed of wilted greens and was 
delicious 
- The Lavraki Psito (sea bass) is 
also a great entree if you're 
looking for seafood 
- The sea bass was fresh and light 
in flavor, allowing the natural 
qualities of the fish to shine 
- The sea bass I ordered was 
simply grilled and dressed with 
lemon juice and oregano 
- The Sea bass is likewise 
excellent 
... (15 more) 

- The Mahi Mahi appetizer was great 
- I ordered the Mahi-Mahi atop 
cranberry fusion cous-cous and 
grilled bok choy 
- The mahi mahi was drizzled with 
crushed olives, which was a bit 
overpowering in taste 
- Mahi Mahi with Five-Spiced 
Couscous, Baby Bok Choy and 
Cranberry-Onion Compote 
- However, the mussels (which IS 
their specialty) and mahi mahi was 
delicious 
- I could just sit there all day 
munching on those mussels, and the 
mahi mahi was soo moist 
- Afterwards I ate their mahi mahi 
- The mahi mahi seemed undercooked 

 

 
There are also many examples of high-ranking clusters that meet all of our criteria for quality 
but are probably less useful because the words they have in common are descriptive, but not 
specific. For example, a cluster might form with opinions that all use the adjective excellent but 
describe different aspects of a restaurant. 
 
Conclusions 
 
To address the growing body of user-generated reviews available on the Internet, a system to 
automatically extract clusters of widespread, common opinions using a combination of 
supervised and unsupervised learning techniques has been proposed. A simple application of a 
Naive-Bayes classifier using words as features performs poorly at classifying short sentences as 
either opinion or non-opinion, likely suffering from high bias. This is probably due to the fact 
that classification is at sentence-level granularity and that words alone are insufficient as 
features. However, 

! 

K -means clustering, coupled with an application-specific quality measure 
both for finding optimum 

! 

K  and ranking the resulting clusters, performs well. Many top-ranked 
clusters meet the subjective criteria initially proposed. 
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