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1. INTRODUCTION 

Silicon MEMS resonators have been considered as 
replacements for quartz crystal resonators in electronic 
systems. MEMS resonators have many advantages over 
quartz references such as small size, low cost, less power 
consumption, and CMOS compatibility. Therefore, MEMS 
resonators are suitable for frequency references (clock) in 
miniaturized handheld electronic devices. 

Silicon MEMS resonators consist of double-ended 
tuning forks (DETF) that vibrate at a designed frequency 
when actuation signal is applied (Fig. 1).  The resonant 
frequency is proven to be a function of temperature of the 
device, dimension of a tuning fork, and the bias 
voltage(Vbias) for actuation. Here, the temperature is 
environmental variable determined by ambient condition, 
the geometrical dimensions of a tuning fork are design 
variables fixed during fabrication, and the bias voltage is a 
control variable. Since the frequency of silicon MEMS 
resonators is greatly affected by temperature variation, 
much worse than that of quartz crystal resonators, frequency 
stabilization is necessary for MEMS resonators. 

The resonant frequency of MEMS resonators can be 
tuned by changing the bias voltage; therefore, we can 
stabilize the frequency by applying proper bias voltage 
according to the measured device temperature. To achieve 
this goal, we need a calibration table that shows 
temperature-bias voltage relation for a fixed target 
frequency. To build this table, we (1) measure frequency at 
array of measurement points (Fig. 2), (2) fit the data using 
polynomial equation, (3) and obtain iso-frequency line from 
the equation. 

Conventional calibration method stated above does not 
care about the efficiency in step (1) and (2). Therefore, a 
large amount of data is gathered and as many features are 
used for fitting as possible. However, for the 
commercialization of MEMS resonators, cost effective 
calibration process is needed. For that, it is necessary to 
minimize the number of measurement points to generate a 
fitting curve without losing the fitting accuracy. Here, a 
machine learning approach to generate the calibration table 
would be necessary.  

If we figure out significant features and optimized 
measurement points using machine learning, we can build 
the same calibration table with shorter measurement time. 
Also, the device-to-device variation error caused by 
uncertainties in fabrication process would be solved using 
the Gaussian process regression algorithm. 

For this study, we measure the frequency of multiple 
resonators as a function of temperature and bias voltage. We 
will evaluate the performance of our study using this data. 

 

 
Figure 1: Schematic of the double-ended tuning fork (DETF) 
MEMS resonator. 
 

 
Figure 2: Resonant frequency of MEMS resonator is plotted 
as a function of temperature and the  bias voltage. 
 
2. FEATURE SELECTION 

First, we investigate that which polynomial is the best 
to fit the data for an individual resonator. Hence, we ignore 
the variation of geometrical dimensions between each 
device at this point, and assume that the frequency is only 
the function of temperature and bias voltage. Let’s define 
the temperature as x1, and a bias voltage as x2. We have m 
training examples {x(i), f(i): i = 1,2, … , m}, where x(i) = [x1

(i) 
, x2

(i)]T and f(i) is measured frequency. The fitting curve for 
the frequency of the resonator can be described as a 
combination of polynomials in two variables. 
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If we treat all variables as high dimensional input 

features such that z = [x1
 n, x2

n, x1
 n-1x2, x1x2

 n-1, … , x1, x2, 1] T 
then, we can linearized the equation as f  =zTθ. θ can be 
calculated with a normal equation. 

 
 



CS229 Autumn 2008 

 
! = ( !Z

T !Z )
"1 !Z

T
"
f , 

 

!
f =

f
(1)

"

f
(m )

!

"

#
#
#

$

%

&
&
&

  

!Z =

z
(1)T

"

z
(m )T

!

"

#
#
#

$

%

&
&
&

 
   

Since we have a large number of features(28 features 
for n =6 ), we conduct feature selection to extract important 
features using backward and forward search. We use 
hold-out cross validation (70% of the data) and 
leave-one-out cross validation (LOOCV) to calculate the 
generalization error for the feature selections. We use two 
criteria in cross validation routine; ‘maximum error method 
(MaxE)’ and ‘average error method (AvgE)’. In each 
iteration step, we obtain the array of error values correspond 
to learning examples. Here, MaxE uses the maximum value 
of errors and AvgE uses the averaged value to choose more 
significant feature set. We start feature selection from the 6th 
order-2 variable polynomial. 

Fig. 3 shows the result of feature selections for three 
different devices. We compared the number of removed 
features with the error for the backward search (Fig. 3 (i, 
ii)), and the number of features with the error for the 
forward search (Fig. 3 (iii, iv)). AvgE and MaxE are 
examined in each case. 

From the calculation result, we can observe that the 
average error is minimized when the number of removed 
features is 13 – 15 when we apply backward search. For the 
forward search, the average error is minimized when the 
number of feature is 10 – 15. Larger ‘number of removed 
features’ is preferred for backward search and smaller 
‘number of features’ for forward search since we want to 
reduce the measurement points to generate the fitting curve. 
Using the measurement data of those devices, we 
summarize top 14 features to be removed or chosen by each 
search algorithm( Table 1). 

 From the analysis of the results from both search 
methods, we found that we can obtain the best fitting error 
when the number of feature is ~13. We conducted feature 
selection for the data from three different devices, and 
obtain similar trend for the optimized number of features. 
Therefore, we conclude that the numbers of significant 
features are common for different devices. 

  
(i) 

 
 

 
(ii) 

 
 
(iii) 

 
 

(iv) 

 
 

Figure 3: Calculation result form feature selection 
algorithm. (i) and (ii) show the average and the maximum 
error for backward search. (iii) and (iv) show the average 
and the maximum error for forward search. 2 different types 
of cross validation methods are used to evaluate errors. 
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Table 1: Top 14-feature list chosen by feature selection 
algorithm. 
 
Backward AvgE 
LOOCV x1

6, x1
3x2

3, x1
3, x1

4x2
2, x1

5x2, x1
4x2, x2, x1

3x2
2, 

x1
5, x2

6, x1, x1
2, x2

4, x1x2
5 

Hold out x1
6,  x1

5x2,  x1
2x2,  x1

5,  x1
4x2,  x1

3x2
3, 

x2
2,  x1

2x2
3,  x1

3x2
2,  x1x2

5,  x1
4, x2,  x1

3x2,  x1x2 
 
Backward MaxE 
LOOCV x1

6, x1
3x2, x1

2, x1
2x2, x1

2x2
4, x1

3, x1
2x2

3,  x1
3x2

3, 
x1x2

5, x1
3x2

2, x1
4x2

2, const,  x1x2
3,  x1 

Hold out x1
6, x1

4x2, x1
3x2, x1x2

5, x1
4, x1

5, x1
4x2

2, x1
5x2, 

x1
3x2

2, x1
2x2, x1

3, x1x2
2, x1x2, x1x2

4 
  
Forward AvgE 
LOOCV const, x1

2, x2
2, x1

4x2
2, x1x2

5, x1
4x2

1, x1
2x2

3, 
 x1

3,  x1
5x2 , x1

3x2
2, x2

6, x1, x1
5, x1

6 
Hold out const, x2, x1

3x2
2, x1

2, x1x2
5, x1

4x2
1, x1

3x2
1, 

 x1
3, x1

2x2 , x1
5, x1x2

3, x1
2x2

3, x1x2
2 , x2

6 
 
Forward MaxE 
LOOCV const, x1x2

5, x2
3, x1

2, x1
3, x2

5, x2, x2
6, x1

4x2, x1, 
x1

4, x1
6, x1

2x2
4, x1

3x2
2 

Hold out const, x1x2
4, x1

5, x1x2, x2, x1
3x2, x2

2,x1
2x2

2, 
x1

4x2
2, x1

3, x2
5, x1x2

5, x1
4x2, x1 

  
Random search for feature selection 

From the previous section, we decided how many and 
which features are needed for the fit with the smallest fitting 
error. However, feature selection methods (forward search 
and backward search) we used above are heuristic so that 
they do not guarantee that the solution has the minimum 
fitting error. It becomes more evident if we see solutions 
presented on Table 1. Although there are some correlations 
among solutions, no unique solution exists. Therefore, we 
can conclude that there is room for improvement with other 
search method. This is the motivation to implement the 
‘random search’ method for feature selection.  

The random search method compares fitting error of a 
large number of possible feature sets in a loop and returns 
the feature set with the smallest error. At the first step, 
randomized feature set is generated by the code. Since we 
start from 6th order-2 variable polynomial equation, we have 
total of 28 features in the feature pool. Therefore, if we want 
to select N features through random search algorithm, we 
have 

28
C
N

different features sets to compare. Here, we will 
use N=13 because we learned 13 is the minimum number of 
features with which we can achieve sub-ppm error. Hence, 
at least

28
C
13

=37,442,260 iterations are needed to obtain the 
solution in an ideal case. This is computationally heavy 
process so that couple of weeks is required on a personal 
computer. Therefore, we decided to run a routine until top 
10 smallest errors are smaller than backward / forward 
search result, and then analyze feature sets in a top 10 list. 
This modification makes the result of random search 
method not to be the guaranteed best solution, but pseudo 

best solutions will be still meaningful if we can improve 
fitting error.  

In the implementation, device #1 and #2 are used with 
‘LOOCV’ for cross validation and MaxE for error criteria. 
After 1 million iterations, results are compared to forward 
search results (Table 2). If we obtain the most frequently 
appeared features from the top 10 feature set list, we can 
build a feature set with small fitting error. The resultant 
feature set is shown in Table 3. 

 
Table 2: Comparison of fitting errors between forward 
search and random search. 

 
Device Forward search  Random search: top 10 
#1 0.6712 ppm 0.5462 to 0.6070 ppm 
#2 0.1473 ppm 0.0941 to 0.1149 ppm 

 
Comparison with analytical model 

Finally, we compare the result of feature selection from 
random search with the analytical model based on the 
physics of the resonant beam. The frequency of the resonant 
beam is a function of the temperature and the bias voltage 
and it can be described as following in a simple model: 
 

f (T ,Vb ) =
1

2! "Si (T )Ac (T )

22.4
2

l(T )
4
B(T ) #

2hSi (T )$0$
3

SiO2
Vb
2

(2tSiO2 (T )$0 + gbeam (T )$SiO2 )
3

 
(2) 

 
where ρSi is the mass density of silicon, AC is the 

cross-sectional area of the beam, l is the length, B is the 
bending stiffness, hSi is the height, tSiO2 is the thickness of 
SiO2 layer, and gbeam is the gap for electrostatic transduction. 
These material and dimensional variables are known to be a 
function of temperature. ε0 and εSi are permittivity constants.  

We conduct Taylor expansion of the Eqn. 2 to express 
frequency as a polynomial function of temperature and bias 
voltage to make Eqn. 2 comparable to Eqn. 1. After Taylor 
expansion, we compare which terms in the resultant 
polynomials are important by checking variance of each 
terms in the given temperature and bias voltage range.  

Table 3 shows the comparison of important features 
from the analytical model approach and the random search 
method. Features in red color are common features from 
those two different methods. From this result, we observe 
that 7 out of 13 features are shared. This is slightly more 
than 50%, which implies that our feature selection methods 
are reasonable in physical sense. However, there are still 
mismatch of features. It suggests the current analytical 
model is not sophisticated enough to describe the relation 
between frequency, temperature, and the bias voltage 
correctly. This is true because a known phenomenon such as 
‘A-f effect’ is not included in Eqn. 2 due to its complexity. 
Also, it is possible that unknown factors affect the 
measurement result, causing Eqn. 2 not to predict frequency 
precisely. 

In conclusion, comparison between analytical model 
and results from feature selection proved the reliability of 
feature selection method we used. Also, it gives us the need 
to improve the analytical model for better prediction. 
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Table 3: Comparison of the combination of 13 best features 
extracted by random feature selection algorithm and the 
analytical mode. 
 
Random feature 
selection 

const., x1
3x2

3, x1
2, x1

5, x2
2, x1x2

3,  x1
2x2

4,  
x1x2

4, x1, x1
4x2

2, x2
5, x1

2x2
3, x1

4 
Analytical 
model 

const., x2
2, x2

4, x1
2, x1, x1

1x2
2, x2

6, x1
2x2

2, 
x1x2

4, x2
5, x1

2x2
4, x1x2

6, x2
3 

 
2. OPTIMIZED CALIBRATION POINT 

In the previous chapter, we could specify the 
combination of optimized features using feature selection. 
As a next step, we minimize the number of measurement 
points to generate calibration tables with similar accuracy. 
Since the optimized number of feature is 13, we only need 
13 measurement points to generate calibration table. We 
reduce unimportant measurement points using backward 
search algorithm. Fig. 4 show the fitting curve which is 
generated by 13 measurement points chosen by backward 
search algorithm, and the error between the fitting curve and 
the measurement values. The maximum error of the fitting 
curve is 0.520 ppm. Since we originally need 323 points to 
generate the calibration table with 0.09 ppm maximum 
error, we could achieve 25 times reduction of measurement 
points with maintaining sub ppm error. 

Optimized measurement points chosen by a certain 
device should be applicable for other devices. Hence, we 
generate fitting curve for other device using the same 
measurement point. Comparison of maximum and mean 
error of each device is shown in Table 3. We can see that all 
maximum error is sub-ppm. 
 
 (i) 

 
(ii) 

 

 
Figure 4: (i) Calibration table generated by the optimized 13 
measurements point using backward search. (ii) The error 
between the generated calibration table and measurement 
result. 

 
Table 3: Maximum and mean errors of calibration table 
generated by 13 measurement points. Measurement point is 
specified by “original” device with backward search 
algorithm, and those points are used for the calibration in 
device # 1, 2, and 3. 
 
Device # Original 1 2 3 
Max. error 
[ppm] 0.520 0.797 0.302 0.290 

Mean error 
[ppm] 0.0965 0.139 0.0701 0.0710 

 
3. DEVICE-TO-DEVICE VARIATION 

In previous two parts, we figured out the way to obtain 
a calibration curve for a device in efficient way. Although 
those are great accomplishment, we want to further reduce 
the number of measurement points.  

The idea starts from the fact that resonators with the 
same design share general frequency-temperature-bias 
voltage characteristics even if there is a small variation due 
to uncertainties in manufacturing process.  In other words, 
although we cannot apply the characterization result of one 
device to other devices directly, it is possible to estimate the 
fitting curve of a test device if we combine full 
characterization data of training devices with a few 
measurement data of the test device.  

Since the variation is caused by latent (unobservable) 
variables such as dimensional variables of the resonant 
beam, we need additional variables on top of temperature 
and bias voltage to learn general characteristics. The 
frequency of at certain temperature and bias voltage points 
are only option for this purpose because there are no more 
observable variables.  

Unlike Eqn. 1, which is a good hypothesis for a single 
resonator characteristic, we don’t know which hypothesis 
effective to treat device-to-device variation due to additional 
input variables. Therefore, we decide to use the Gaussian 
process regression since it free us from the difficulty to 
choose right hypothesis. 

Let’s define training input as XIN, training output as F, 
testing input as X*IN, and the testing output as F*. As 
additional input variables to identify each device and to 
learn general characteristic, we include the frequency of 
certain measurement points to input XIN.  If we define: 

 
m: # of on calibration data on each device 
n: # of devices for training 
k:  # of measurement data on a test device 
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Input for the Gaussian process regression can be 
described as: 
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In the implementation, we prepare measurement data of 

3 devices with identical design. Then, we use full 
characterization data of 2 devices with data from a few 
measurement point of the test device for training with the 
squared exponential kernel. After optimizing parameters for 
the regression, we generate the calibration table (Fig. 5). 
Less than 20 ppm error is achieved with 5 points 
measurement, and less than 40 ppm error with 1 point 
measurement. This is great result considering we use only 
two devices for training. Further improvement is expected in 
the future when more training devices are prepared.  

 
(i) 

 
 
 
 
 
 
 

(ii) 

 
 

Figure 5: Calibration table generated by (i) 5 point 
measurements and (ii) 1 point measurement based on the 
training data of 2 devices. 

 
CONCLUSION 

Using tools in machine learning, we success to develop 
effective calibration process for the frequency control of 
MEMS resonators. We achieve 25 times reduction of 
measurement points for the calibration with maintaining 
sub-ppm error between the fitting curve and measurement 
values. Also, we demonstrate the use of Gaussian process 
regression to solve device-to-device variation issues. Since 
the current calibration error in this part is not sufficient for 
the commercialization, future work would be focused on the 
improvement of this problem using large amount of training 
data. 
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