
Prediction of double gene knockout measurements

Sofia Kyriazopoulou-Panagiotopoulou
sofiakp@stanford.edu

December 12, 2008

Abstract

One way to get an insight into the potential interaction between a pair
of genes is to compare the phenotype of the double knockout organism to
the phenotype we would expect if the genes were independent. However,
since gene knockouts are expensive and time-consuming, we would like
to be able to predict gene interactions. We used a dataset consisting
of 352 yeast genes for which only a few double knockout measurements
were known, and applied regression algorithms to predict the unknown
measurements. In this article, we describe the algorithms we used and
compare their results.

1 Introduction

One way to get an insight into the interaction of two genes is to knock them
out and compare the phenotype of the double knockout organism to the pheno-
types of the two single knockout organisms. This can be done by comparing the
measurement of a reporter protein in the double knockout organism to what
we would expect if the genes were independent, based on their single knock-
out measurements. For instance, if two genes are in the same pathway, then
knocking out both may have a less severe phenotype than expected.

We consider the case where only a small subset (the query genes) of the genes
we want to study have been knocked out in pairs with all the other genes, and
for the rest of the genes (the array genes) we only have their double knockout
measurements against the genes of the first group. We would therefore like to
predict the unknown measurements.

For our experiments we used a dataset of 352 yeast genes. There are 96 query
genes measured against almost all the genes of the dataset and 256 array genes
measured only against query genes. Our goal is to predict the double knockout
measurements of the array genes against other array genes. Since the expected
double knockout measurements are known for all pairs, predicting the difference
between observed and expected double knockout measurements is equivalent
to predicting the true double knockout measurements. The data we used for
predictions is in the form of a symmetric 352 × 352 matrix D. D(i, j) is the
difference between the true double knockout measurement of genes i and j and

1



Figure 1: A simplified version of our
problem. Genes 1 to 3 are query
genes, and genes 4 to 7 are array
genes. The entries in light blue
are known. These are the differ-
ences between the observed and the
expected double knockout measure-
ments for the corresponding pairs of
genes. All the other values are miss-
ing. We are interested in predicting
the values in yellow.

their expected double knockout measurement. If there is no double knockout
measurement available for the pair of genes (i, j), then D(i, j) is treated as a
missing value.

Figure 1 presents a simplified version of the problem. In this example genes
1 to 3 are query genes and genes 4 to 7 are array genes. The light blue entries
are the differences between the observed and the expected double knockout
measurements for the corresponding pairs of genes. These are the values we
know. All the other entries are unknown. Notice that query genes are measured
against most but not all the other genes: There might be a few missing values
even for query genes. These may have been caused by errors in the experiments
and are shown in red. Of course we could try to predict these values too (and
in fact we do), but we are mostly interested in predicting the values shown in
yellow, i.e. the measurements of the array genes against other array genes.

In section 2 we describe the cross validation scheme we used for evaluating
our predictions. In section 3 we explain how we can make relatively “crude”
predictions by clustering. Later, in sections 4 and 5 we see how these predic-
tions can be refined using regularized linear regression and Gaussian Processes
respectively. Finally, in section 6 we conclude and discuss the directions of
future work.

2 Evaluating our predictions

We used a 10-fold cross validation scheme to evaluate our predictions. At each
fold we selected a subset of the query genes and treated them as array genes,
i.e. we treated their measurements against array genes as missing. Then we
computed the root mean squared error (RMSE) of our predictions for these
genes.

We assume that most of the pairs of genes are independent, so in most cases
the difference between the true and expected double knockout measurement
should be close to zero. Therefore, our baseline algorithm always predicts zero.
The baseline RMSE is 0.3297.

2



3 Solution 1: k-means clustering

If we treat each row (or equivalently each column) of D as a training example
with 352 features, then we can apply k-means to cluster the genes. Of course,
the values of some of the features are missing for some examples. There are
several ways to handle these missing values. For example, we could replace
them with zero, based on our assumption that most pairs are independent, or
with the row or column average. However, it turned out that the best approach
in terms of performance was to completely ignore the missing values, i.e. to
compute the distance between a gene and a centroid taking into account only
the common non-missing features.

After clustering, we can use the values of the cluster centroids to predict the
missing values of the genes in the cluster. Remember that D is symmetric, so
to predict D(i, j) we can use either the cluster of gene i or the cluster of gene j.
To see why this is true, assume that we want to predict D(4, 5) in the example
of Figure 1. We could find the cluster of gene 4 and take the value of the 5th

feature of the centroid of that cluster. This would be the average measurement
of the genes of the cluster against gene 5. Alternatively, we could find the cluster
of gene 5 and take the value of the 4th feature of the centroid of that cluster.
This would be the average measurement of the genes of the cluster against gene
4. For that reason, our prediction for D(i, j) is the average of the value of the
ith feature of the centroid of the cluster of gene j and the jth feature of the
centroid of the cluster of gene i.

When running k-means, we initialized the centroids 5 times and returned
the assignment to clusters with the smallest sum of within-cluster distances.
The 10-fold cross validation experiment was repeated 87 times. The mean of
the RMSEs we obtained was 0.2564 with a standard deviation of 0.0048.

4 Solution 2: Regularized linear regression

Consider the simplified example of Figure 1 and assume we want to predict
the unknown measurements for gene 7, i.e. we want to predict the last 4 val-
ues of column 7. We can use the first three rows of D, for which (almost) all
the values are known, as the training data for a linear regression model. Our
dataset consists therefore of three training examples with 6 features each. The
corresponding outputs are the three first values of column 7. Using the param-
eters learned by linear regression, we can predict the values of column 7 that
correspond to the sets of features of the last 4 rows of D.

However, not all the features of the last 4 rows are known. For that reason,
we first apply k-means and replace missing values with the corresponding pre-
dictions. This implies that we follow a two-step prediction procedure, where we
first find some “crude” predictions using k-means and then refine them using
regression.

Note that the number of features used for linear regression is much larger
than the number of training examples. Going back to the original problem,

3



there are 96 query genes which will be our training examples, each having 351
features. As a result, linear regression doesn’t work, unless we use some form
of regularization, such as L2 and L1.

L2 regularized linear regression minimizes ‖Xθ − ~y‖2 + k‖θ‖2, where X is
the matrix of the training data with one training example per row, θ is the
column vector of the parameters of linear regression, ~y is the column vector of
the target values, and k is a parameter of the model. The closed form solution
for θ is then (XTX + kI)−1XT~y, where I is the identity matrix.

L1 regularized linear regression minimizes ‖Xθ − ~y‖2 + k‖θ‖1. There is
no closed form solution to this minimization problem, so we used an existing
MATLAB implementation [3].

For both L2 and L1 regularization, the parameter k was chosen by com-
paring different values using the cross-validation scheme described in section 2.
Since we apply k-means before clustering, there is a random component in our
predictions, so again we ran the cross-validation several times and computed
the mean and standard deviation of the RMSEs obtained. The mean RMSE
for L2 regression was 0.2268 with a standard deviation of 0.0019, while for L1
regression the mean was 0.2235 and the standard deviation 0.0029.

5 Solution 3: Gaussian Processes

We briefly explain how Gaussian Processes can be applied in the case we study
using the example of Figure 1 and following the same naming conventions as
in [2].

Assume that we want to predict the missing values of gene 7 and that y(i) =
f(x(i)) + ε(i), i = 1, 2, . . . , 3, where {(x(i), y(i))} are our training examples, as
in the previous section, and ε(i) ∼ N(0, σ2) are i.i.d. “noise” random variables.
Assume also that X is the 3×6 matrix of training examples as explained before,
X∗ is the 4× 6 matrix of test examples (with missing values replaced as in the
previous section), ~y is the vector of known outputs for the examples of X, and
~y∗ are the target values we want to predict. Then, assuming a zero-mean prior
over functions f(·) ∼ GP (0, k(·, ·)), where k is a kernel function, it can be shown
([1], [2]) that ~y∗|~y,X,X∗ ∼ N(µ∗,Σ∗), where

µ∗ = K(X∗, X)(K(X,X) + σ2I)−1~y

Σ∗ = K(X∗, X∗) + σ2I −K(X∗, X)(K(X,X) + σ2I)−1K(X,X∗)

K(X,X) ∈ R3×3, such that (K(X,X))ij = (k(x(i), x(j))), and K(X,X∗),
K(X∗, X), K(X∗, X∗) are defined similarly.

We used a linear kernel k(x, x′) = x · x′, and chose the noise variance by
cross validation. The mean RMSE for σ2 = 10, found after 42 repeats of the
experiment, was 0.2292, with a standard deviation of 0.0023. It is worth noting
that we experimented with other kernels too. The predictions of the squared
exponential kernel were always very close to zero, so its performance was almost
the same as the baseline performance, and the polynomial kernels of order higher
than 1 performed worse than the linear.

4



6 Conclusions and future work

Table 1 summarizes the results of the previous sections.

k-means L2 regression L1 regression GP
mean RMSE 0.2564 0.2268 0.2235 0.2292

standard deviation 0.0048 0.0019 0.0029 0.0023
iterations 87 87 30 42

Table 1: Mean and standard deviation of the RMSEs for the algorithms of the
previous sections. The last row contains the number of iterations that were used
to obtain the statistics in each case. The baseline RMSE is 0.3297.

Although L1 linear regression has the best performance, we believe that
Gaussian Processes are a promising approach due to the flexibility introduced
by the kernel function. Evaluating more kernels is an important direction of
future work. We are currently working on using L1 linear regression to learn a
Bayesian network of the genes and to create a covariance matrix that could be
used as a kernel. Additionally, we are studying ways of incorporating the single
knockout measurements into our predictions.

Acknowledgements

I am deeply grateful to Ph.D. student Alexis Battle for her invaluable guidance
and advice throughout this project.

References

[1] C. E. Rasmussen, C. Williams: Gaussian Processes for Machine Learning,
MIT Press, 2006, http://www.gaussianprocess.org/

[2] Chuong B. Do, Honglak Lee: Gaussian Processes, 2008

[3] P. Carbonetto: MATLAB implementation for L1-regression, http://www.
cs.ubc.ca/~pcarbo/

[4] U. N. Lerner: Hybrid Bayesian Networks for Reasoning about Complex
Systems, Ph.D. Thesis, 2002

5

http://www.gaussianprocess.org/
http://www.cs.ubc.ca/~pcarbo/
http://www.cs.ubc.ca/~pcarbo/

	Introduction
	Evaluating our predictions
	Solution 1: k-means clustering
	Solution 2: Regularized linear regression
	Solution 3: Gaussian Processes
	Conclusions and future work

