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1 Introduction

Due to the excessive need of wireless spectrum and the inefficiency in utilizing it, the technology of
cognitive radio (CR) addresses the issue of allowing unlicensed users to make use of the frequency
bands where licensed users is currently not active. From the hierarchical structure, CR users can
only grab resources under the premise of not interfering with the normal operation of the primary
system (PS), and this extra constraint complicates the original time-varying wireless communica-
tion. By assuming Bernoulli distribution for each channel and independence across channels, this
dynamic spectrum access scheme can be treated as a multi-armed bandit (MAB) problem for a
single CR user, where each channel is considered as a slot machine with some expected reward, and
this user is trying to get as much available bandwidth as possible. The key component of MAB
problem is the tradeoff between exploitation and exploration, where the CR terminal tries to pick
the channel that has highest estimated reward from past history, and look for new channels that
might give even higher rewards at the same time.

There are different versions of MAB formulation. In the case of stationary distribution, Gittins
index is shown to be the optimal strategy for discounted MAB in [6], and [8] apply it to CR. By
allowing channel distributions to change over time, Whittle’s index is proved to be asymptotically
optimal under some constraints in [12], and it is shown in [9] that opportunistic spectrum access
is indexable and hence able to apply this strategy. However, the above approaches both assume
infinite horizon and maximize discounted reward, whereas in the wireless environment, we only
care about the reward obtained in a finite observation period, which leads us to the finite-time
MAB introduced in [3] and others. So far there is no optimal strategy to our knowledge, and we
would refer to different finite-time algorithms with tuned parameters. In this paper we basically
follow the algorithms in [1] and [11], and proceeds as follows: In section 2 we describe the network
model in detail, and in section 3 we examine some common finite-time MAB algorithms. Numerical
simulations are provided in section 4 to compare algorithms in different probability distributions,
and followed by the conclusion as well as possible extensions in section 5.

2 Network Model

Consider a set of channels M = {1, · · · ,M} in a PS, and a CR terminal tries to use these channels
when they are free, or not occupied by the PS. The channels are temporally divided into discrete
time slots, and the CR terminal synchronizes to the PS such that the beginning and end of each time
slot is known. The probability that channel i is free is pi, i ∈M. In general we model the channels
using a stochastic process, but here we assume that pi is stationary to simplify the problem. The
terminal operates as follows: for each time slot t, the terminal chooses some channel i(t), senses to
determine whether it is free (with probability pi(t)), and conducts its own transmission if it is; if
the channel turns out to be occupied, then the terminal needs to wait till the next time slot, and
choose some channel (maybe the same one) again. Normally the terminal has no prior information
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about p = {p1, · · · , pM}, and will learn some empirical distribution in the process of transmission.
Let the reward of choosing channel i at time t be x

(t)
i , then the goal of CR terminal is to maximize

the accumulated reward up to observation period T , i.e.
∑M

i=1

∑T
t=1 x

(t)
i , or to minimize the regret

of adopting this strategy, calculated by Tp∗ − ∑
i

∑
t x

(t)
i , where p∗ = maxi∈M pi is the optimal

expected reward per time slot. From now on we simply assign 1 to x
(t)
i if channel i is selected at

time t and not occupied, and 0 otherwise.

3 Learning Algorithms

3.1 Static environment

Most algorithms for finite-time MAB assumes stationary probability, as in [3], [11], and the refer-
ences therein. Here we introduce some basic prototypes to compare their performance under our
network model.

3.1.1 Upper confidence bound

This algorithm is derived from the index-based policy developed in [3], where the index is the sum
of two terms: one is the current average reward, and the second term corresponds to the confidence
interval that both the true and average rewards fall in with high probability. The upper confidence
bound (UCB) algorithm first initializes by selecting each channel once. After that, for each time t,
UCB chooses channel i(t) such that

i(t) = arg max
i∈M

(
x̄

(t)
i +

√
ξ log t

n
(t)
i

)

where n
(t)
i is the number of times channel i has been chosen so far, x̄

(t)
i =

∑t
τ=1 x

(τ)
i /n

(t)
i is the

current average reward, and ξ is some parameter chosen to be 2 in [3]. By letting ξ = 0.5, not only
it performs better in our simulation, but we also effectively reduce the upper bound of expected
regret from a factor of 4. An improved algorithm, UCB-V, that considers the effect of the empirical
variance, is proposed in [2] and chooses channel i(t) such that

i(t) = arg max
i∈M


x̄

(t)
i +

√√√√√
(
x̄

(t)
i − (x̄(t)

i )2
)

ξ log t

n
(t)
i

+
c log t

n
(t)
i




where we are free to adjust ξ and c.

3.1.2 ε-Greedy and its variants

The ε-greedy strategy consists of choosing a random channel with probability ε, and select the
channel with highest current average reward otherwise. Here the choice of ε ∈ (0, 1) is not specified.
However, this simple form of ε-greedy strategy is sub-optimal for stationary probability distribution
because the constant ε will prevent the terminal from choosing the optimal channel asymptotically.
A natural variant, GreedyT, is to decrease ε gradually by choosing εt = min{1, ε0

t }. We can also use
the decreasing factor log(t)/t instead of 1/t to get another strategy GreedyLogT. Some discussion
on the regret bounds of the greedy-family algorithms are given in [3] and [4].

2



3.1.3 SoftMax and its variants

Recall that x̄
(t)
i is the current average reward of channel i at time t, then the SoftMax strategy

chooses channel i at time t + 1 with probability exp(x̄(t)
i /τ)/Z(t), where Z(t) is the normalization

factor. τ ∈ R+ is called the temperature and is free to user’s choice. Similar to the case in ε-greedy,
we can gradually increase the probability that the channel with highest average reward being chosen
by setting τt = τ0/t or τt = τ0 log(t)/t, which we call them SoftMaxT and SoftMaxLogT.

3.2 Stochastically changing environment

So far the algorithms above all use average reward as an index to compute which channel to choose.
However, in the time-varying wireless channel, it is not reasonable to assign equal weights to all
observations no matter when we acquire them. One intuition is to forget old data and introduce
“backward-discounted” reward by calculating the weighted average reward

x̂
(t)
i =

1

n̂
(t)
i

t∑

τ=1

γt−τ
i x

(τ)
i , n̂

(t)
i =

t∑

τ=1

γt−τ
i 1{i(t) = i}

where 0 < γi < 1 is the discount factor for channel i that depends on how fast channel i changes,
and the weighting function decreases as t− τ increases, as in [7]. Now we can replace the average
reward used in UCB, ε-greedy, and SoftMax with this weighted average reward. Notice that this
new reward may not be applied directly to the variants of ε-greedy and SoftMax since exploration
is comparatively important in the dynamic environment. Another possibility is to use “sliding
window” with width depending on how fast channel changes, which is proposed in [5] along with
some related regret bounds.

4 Numerical Simulation

In our simulation, we assume that one channel is either occupied by the PS (hence has a low free
probability) or not, and we test the stationary algorithms against the following three distributions:

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10
Distribution 1 .9 .8 .8 .7 .7 .3 .3 .2 .2 .1
Distribution 2 .9 .3 .3 .3 .2 .2 .2 .1 .1 .1
Distribution 3 .9 .8 .8 .8 .8 .8 .8 .8 .8 .8

The parameters adopted for our algorithms are UCB with ξ = 0.5, UCB-V with ξ = 0.2 and
c = 0.3, Greedy with ε = 0.1, GreedyT with ε0 = 25, GreedyLogT with ε0 = 4, SoftMax with
τ = 0.05, SoftMaxT with τ0 = 8, and SoftMaxLogT with τ0 = 2.5. After 10000 iterations, the
results of average regret, variance of regret, and the percentage of time choosing the optimal channel
(CH1) of different algorithms are shown in Figure 1. These comparisons show that for ε-Greedy
and SoftMax, gradually decreasing the percentage of exploration helps the algorithm to converge to
choosing the optimal channel. Notice that in distribution 2, though the SoftMax family have small
average regret and high percentage of optimal choice, they exhibit extreme large variance in regret,
which is not a sign for good algorithm. Besides, the regret bounds derived for these algorithms
may be too loose for smaller T . For instance, the modified bound for UCB in distribution 3 gives
1243.4, which is not only much larger than our empirical result, but also larger than the total
reward. Based on the three indices that we tested, UCB-V gives the best performance, but this
superiority may depend on the parameters that we choose. For the ε-Greedy family, if we choose
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Figure 1: Regrets and percentage of optimal action for algorithms under different distributions

larger ε, then in general we have larger mean and smaller variance, whereas the same thing holds
for larger τ in SoftMax family. We demonstrate the relative variations of performance indices by
choosing different parameters, which is shown in Figure 2. For GreedyT, the optimal ε0’s are 2.5,
100, and 25 for these indices individually, and the actual choice of ε0, if we decide to use GreedyT,
depend on how the system evaluates these indices.

5 Conclusion and Future work

In this paper we transform channel selection in CR into an equivalent MAB problem, examine sev-
eral approaches and algorithms that deal with it, and run simulations to compare their performance
under stationary environment. There are several topics that we can keep working on. Besides the
non-stationarity of channels mentioned in Section 3.2, we can study different channel models, such
as the Gilbert-Elliot model used in [10], which treats one channel as a Markov chain with two
states, busy and idle, yet preserve the independence across channels. More generally, channels can
be modeled as a partially observable Markov decision process (POMDP) by introducing the corre-
lation across channels, which is examined in [13]. One other dimension is to introduce imperfect
sensing to make the scenario more realistic, as discussed in [10]. Finally, we can extend our topic
into multi-agent system, where all terminals perform distributed learning without changing any
information explicitly, allowing the CR network to be effectively established in a simple manner.
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Figure 2: Relative variation of performance indices versus parameter choice
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