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1 Motivation

We want to generative models of pianists based on input features extracted from musical scores (such as the number
of events in a beat, the position of a beat in a phrase, dynamics, harmony, form, etc.) Target features are tempo
values for each beat of a performance. We try to extract performer style from these models to generate synthetic
performances of different compositions. These models can also potentially be used to identify the performers of new
or old recordings with unknown performers.

Training data consists of tempo curves extracted from audio recordings of 358 performances of five different
mazurkas composed by Frédéric Chopin played by 118 different performers. Craig has demonstrated that a performer
nearly always maintains a consistent performance rendering of the same piece over time (even after several decades)
and numerical methods based on correlation can be used to identify audio recordings of the same piece played by
the same pianist.1

We are interested in being able to transfer the performance style of a particular performer between different

pieces for the purpose of synthetic performance in that performer’s style, or to identify a performer in a recording
of unknown or disputed origin.2 Recent work has been done on attempting to address performer style in a machine-
learning context, but state-of-the-art is “still rather speculative”.3 Automatically-generated performance rendering
competitions have been held at several music-related conferences in the past few years.4

2 Input and Target Features

Target and input features for the project consist of data for five solo piano mazurkas composed by Frédéric Chopin
(1810-1849). The mazurka is a folk dance from Chopin’s native country of Poland in triple meter which is generally
characterized by a weak, short first beat in each measure and an accented second or third beat. Chopin converted and
popularized this folk dance into an abstract musical art form. Performance conventions for playing these compositions
also show a general trend over time from a dance to more abstract/personal musical interpretations. In addition,
performances of mazurkas tend to vary regionally, with Polish and Russian pianists influenced by the historical dance
interpretations, while pianists more geographically distant from this central tradition tend to use a more individual
and abstract playing style.

2.1 Target Features

The target data consists of tempo data for each beat in various performances by professional pianists, extracted
by Craig as part of the Mazurka Project at Royal Holloway, University of London.5 Performance data consists of
absolute timings for beats in recordings of the mazurka, as well as loudness levels at the locations of the beats (which
are not utilized in the current study). The tempo data used in this project is converted into beats per minute which
is inversely proportional to the duration between absolute beat timings locations:

tempo(i) =
60

beat(i+1)
− beat(i)

1Hybrid Numeric/Rank Similarity Metrics for Musical Performance Analysis, Craig Sapp, ISMIR 2008.
http://ismir2008.ismir.net/papers/ISMIR2008\_240.pdf

2Fantasia for Piano, Mark Singer, The New Yorker, 17 September 2007.
http://www.newyorker.com/reporting/2007/09/17/070917fa\_fact\_singer?currentPage=all

3In search of the Horowitz factor, Widmer, et al., AI Magazine 24/3 (Sept. 2003), furlhttp://portal.acm.org/citation.cfm?id=958680
4http://www.renconmusic.org/icmpc2008/
5http://mazurka.org.uk/info/revcond, or in Microsoft Excel format: http://mazurka.org.uk/info/excel/beat
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Beat timings are extracted manually with the assistance of audio analysis tools, using an audio editor called Sonic

Visualiser.6 Automatic beat extraction is not possible with current state-of-the art methods since mazurka beat-
tempos can vary by 50% between successive beats (a characteristic of the mazurka genre) and most beat-extraction
methods assume a narrower variation between beats. Each mazurka performance consists of a sequence about 200–
300 beat-tempos. Figure 1 shows beat-tempo curves for several performers all playing mazurka in B minor, op. 30,
No. 2.

Figure 1: Six example beat-tempo curves for performances of mazurka 30/2. The light-gray curve is the average for
35 performances. Plot 1 shows a performer who concatenates phrases; plot 2 shows a performer who plays slower
than average and does not do much phrase arching; plot 3 show a performer who exaggerates the metric cycle by
switching between fast and slow beats; plot 4 shows someone who plays very close to the average; plots 5–7 show the
same performer recorded on different dates.

Each of the five mazurkas utilized for this study have performance data for 30 to 90 performances. All mazurkas
include data for three performances by Arthur Rubinstein, a well-known and prolific performer of the 20th-century,
as well as occasional duplicate performers who record the same mazurka twice.

2.2 Input Features

Several input features were extracted from text-based musical scores for each mazurka.7 We chose features which we
thought would be likely to differ between different performers and might stay stable between the performances of an
individual performer. The current set of features going from general to more musically specific:

1. The mean feature: This feature is always 1. We included it so that the linear regression algorithm can learn the
constant offset. The theta value for this feature describes roughly the average tempo at which the performer
plays.

2. The global position: This feature increases linearly as the piece progresses. The theta value for this feature
describes roughly whether the performer accelerates or decelerates on average over the course of the entire
piece.

3. The metrical position: This feature is the position of the beat in the measure. In this case, because all Mazurkas
are in 3

4 time, the position is either 1, 2 or 3. The theta value for this feature describes roughly whether the
performer accelerates or decelerates inside each measure (averaged across the whole piece.)

4. The number of left hand events: This feature is the number of notes played by the performer’s left hand in
each beat. The theta value of this feature describes roughly whether the performer speeds up or slows down
when playing beats with more ornate left hand parts.

6http://www.sonicvisualiser.org, http://sv.mazurka.org.uk
7http://kern.ccarh.org/cgi-bin/ksbrowse?type=collection&l=/users/craig/classical/chopin/mazurka
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5. The number of right hand events (same as above.)

6. The “harmonic charge”: a measurement of the local harmonic activity. The calculation method is described
below. The theta value of this feature shows roughly whether the performer plays faster when the performance
modulates up a fifth.

To calculate the “harmonic charge” we measure the interval between the global key of the piece and the local key
of a analysis window around the current beat. The interval is described as a number of perfect-fifths between the
key tonics. For example, if the global key is C major, and the local key is G major, then the harmonic charge is +1
since G major is close to C major. If the local key is B major, then the harmonic charge compared to C major is
higher at +6 since it is a more distant key relation.

We calculate the local and global key measures using the Krumhansl-Schmuckler key-finding algorithm with
Bellman-Budge key profiles.8 The algorithm measures a chromatic histogram of notes in a musical selection, and
then uses Pearson correlation to compare to expected prototypes for major and minor keys, taking the test key with
the highest correlation as the answer:

key = argmax
k

∑

t[h(k, t) − µh][p(t) − µp]
√

∑

t[h(k, t) − µh]2
∑

t[p(t) − µp]2

where h is a duration-weighted histogram of pitches in the analysis window in the music score; p is a pitch-class
histogram expected for a major or minor key.

3 Linear Regression Model

Because we are trying to build an application, we decided to start out with a simple model and improve it incremen-
tally. Our basic model states that the tempo with which a performer will play a beat is Gaussianly distributed with
mean at an affine function of the absolute index of the measure containing the beat, the absolute index of the beat,
the index of the beat in the measure (in this case, a number between 1 and 3, because Mazurkas have three-beat
measures), the number of beats in the performer’s left hand, the number of beats in the performer’s right hand, and
the harmonic charge.

In frequentist terms, our prediction for the performer will be an affine function of the features listed above, and
our effort function will be the sum of squared errors between the prediction and the actual performance. In order to
make the error output more comprehensible, we calculated the root mean squared (RMS) error, which is equivalent.

Figure 2: Three progressive reconstructions of Rubinstein’s 1952 performance of Mazurka 17/4, using linear regression
on the original features as well as quadratic features.

For each piece, the average of the RMS error between each recording and the average of all recordings of each
piece was lower than the average of the RMS error between each recording and its reconstruction under my linear
regression model. This means that the reconstructions are worse approximations to the recordings than the average
recording. For example, the average RMS error for the reconstructions of mazurka 63/3 is 30.203, while the average
RMS error for the average of all recordings of Mazurka 63/3 was 25.931.

8Visual hierarchical key analysis, Craig Sapp, in ACM CIE 3/4, October 2005. http://portal.acm.org/citation.cfm?id=1095534.1095544
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Next, we did an ablative analysis. We started by stripping off all the features (except the constant) in order to
get a base-line on the error. The error of this severely ablated model (which in effect approximated every recording
with a flat line) produced an error which was not much higher than the error of the linear regression model which
had all five features we listed as its input. For example, the average RMS error for the flat-line approximation of
Mazurka 63/3 was 31.984. (On only one of the Mazurkas (Mazurka 242) was did the average RMS error for the
flat-line approximation and the average RMS error for the full linear regression differ by as much as 4.5.)

This indicates not only that the algorithm is not extracting enough information from the data to be a better
approximation than the average recording, but that none of these five features are not strongly correlated with the
tempo data (because if they were, some values of theta would have significantly lowered the RMS error.) 9.

We have also done experiments adding quadratic terms to our existing features. For each feature x(i) we added
another feature xi+N = (x(i))2, the idea being that many of the stuctures in music have shapes that look like
arches (see for example Figure 1). To test whether this was effective we trained both models on Rubinstein’s 1952
performance of Mazurka 17/4 and we tested them on Rubinstein’s 1966 performance of the same Mazurka. Adding
these terms reduced the RMS error from 22.74 to 21.19 (this means that the error function, which is proportional to
a the square of the RMS error, was reduced by an additional 10%.)

As a specific example consider Figure 2. This shows a progressive reconstruction of the piece, first using only the
first three features, then using the first five features and then using all six features. The first reconstruction includes
the global and metric position features. Here we see that it has roughly catured the tempo-arch in which Rubinstein
plays the piece.

Figure 3: Weights trained for all the performances by Rubinstein and Czerny-Stefańska on Mazurkas 17/4 and 63/3.
Each plot shows the six compoents of θ with different colored bars indicating different performances. (The values
for theta1 have been scaled by a factor of .1 to fit in the chart.) For brevity we did not include the squared features.

While the reconstriction is by no means a good fit, it does capture an interesting fact about Rubinstein’s per-
formance. The second and third reconstructions feature sharp downward spikes, which do seem to align well with
downward spikes the target. Inspecting the score of the piece, we found that these downward spikes occur whenever
there was a half-note in the left hand (which would cause the left-hand event count to drop.) These spikes all align
well with spikes in the target recording, so Rubinstein really does slow down when the left hand plays a half-note.

As can be seen in Figure 3, the weights assigned to the features vary from Mazurka to Mazurka even when the
performer is held constant. However, while the features have not characterized the style of a performer sufficiently to
identify the perfomer of an arbitrary piece, the values of θ detected by the logistic regression usually seem relatively
stable within performances by the same performer of the same piece. (The two recordings of Czerny’s playing
Mazurka 63/3 were fourty years apart.) An improved version of this technique could be useful for identifying the
performer of a disputed recording.

9The full data-set and code is available here http://www.stanford.edu/~marce110/cs229/linear-regression.tgz
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4 Future Directions

4.1 PCA Filtering

Another experiment we performed on the data was to do PCA filtering on the several of the recordings, to test the
robustness of Craig’s similarity algorithm to degradation of its input.10

By PCA Filtering, we mean that we did principle component analysis on the data, calculated the PC loadings for
each recording and each Principle Component and then reconstructed each recording using only the first n principle
components. We did this for n = 1, 2, 3, ..., 8, 9, 10, 20, 40, 80.

We found that by retaining the ten largest principle components of the data, the similarity algorithm was able to
detect the true performer of the original recording with high accuracy. 11

The similarity algorithm may not be taking advantage of all the information that may be available in the filtered
recordings, however, it is able to correctly identify the performers of recordings even when the recording has had all
but its first ten principle components filtered out. The fact that it is capable of correctly identifying the performer
of the recording indicates that, in some sense, the performer’s style can be distinguished from the styles of the other
performers using ten numbers.

4.2 Linear Regression with More Features

It is clear that we need to extract more features from the scores. Possible features that might be helpful include

1. An average of many different performances of the piece (this would allow the linear regression algorithm to
look for patterns in the way that the current preformer differs from the average.)

2. Phrasing information (the position of the beat in a musical phrase). These feature(s) would either be the
locations of the measures in the phrase based on hand-generated phrase-boundary, or a collection of sine and
cosine waves (i.e. sin

(

2π
k

n
)

and cos
(

2π
k

n
)

for various values of k (here n is the index of the measure in the
piece.) For example, in Figure 1 there are eight regularly spaced phrases that are each twenty-four beats long.

3. Adding more detailed rhythmic information. For example, the number of half-notes, quarter-notes, eighth-
notes, etc. in the left and right hands in the current measure as well as the current beat.

4. Music is an ordered squence of events which give rise to the interpretation. Our current models don’t take this
into account. We can include the features of neighboring beats in the feaature set of the current beat to gain
musical context.

5. Nearby dynamics markers in the music (e.g. piano and forte markers, crescendos, etc.)

4.3 Kernelized Linear Regression

Kernelized linear regression could allow us to detect more complex relationships between the features for example a
dissonant note at the end of a measure might warrant a different interpretation from a dissonant note at the start
of a measure. Another way to use kernelized linear regression would be to construct a mapping from the musical
score of a measure to a tree structure and then use a tree-similarity measure as the kernel.12 This could have the
advantage of automatically detecting which features of the score are relevant but the disadvantage that it could be
difficult to tell which features those are.

4.4 Hidden Markov Models

Another possibility is to model the pianists as entities with hidden state using a hidden Markov model. Hidden
Markov models have enjoyed success in areas such as speech recognition. Because musical interpretations may have
similar structures to vocalized speech (both are acoustic processes designed to be processed by the human brain),
this may be grounds for optimism that a hidden Markov model could characterize the playing style of a performer.
Another reason that hidden Markov models might be useful models of performers is that pieces of music may contain
distinct sections meant to be interpreted with different moods.

10Hybrid Numeric/Rank Similarity Metrics for Musical Performance Analysis, Craig Sapp, ISMIR 2008.
http://ismir2008.ismir.net/papers/ISMIR2008\_240.pdf

11A graph can be found here http://www.stanford.edu/~marce110/cs229/PCAandResidue-20081009.pdf
12“A survey of kernels for structured data”, Thomas Gärtner, ACM SIGKDD Explorations Newsletter http://portal.acm.org/

citation.cfm?doid=959242.959248
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