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1. Abstract 

We demonstrate a supervised learning approach to tracking the location of live, 
immobilized flies for purposes of performing automated laser microsurgery to prepare flies for 
in-vivo two-photon imaging.  We explored least-squares estimation and multi-class logistic 
regression for classifying pixels in a digital image as either fly eye, fly skin or background.  The 
multi-class logistic regression classifier outperformed the least-squares estimator across nine 
different experiments conducted with incremental training and testing image sets.  We used k-
means clustering of machine-labeled image pixels to estimate the location of fly eyes in test 
images.  When clustering pixels classified as eye point by the multi-class logistic classifier, k-
means correctly located the fly eyes in 100% of our largest test set, which consisted of sixteen 
images with varying amounts of defocusing.  

 
2. Introduction 

 
2.1 Background  
 Drosophila melanogaster, better known as the fruit fly, has long been studied as a model 
organism.  With a well-characterized genome, Drosophila genetics can be manipulated in the 
laboratory with relative ease.  Understanding the fruit fly is tremendously relevant to solving 
problems in human health, since roughly fifty-percent of a fly’s protein sequences have an 
analog in humans.  From a neuroscience perspective, Drosophila are particularly interesting due 
to the simplicity of their neural circuits, which perform computation to guide behavior.  A major 
challenge to the Drosophila brain research community has been in acquiring statistically 
significant sets of neural data.   

Fly brain imaging requires an unobstructed optical path between brain and microscope.  
In the past, highly trained biologists have manually dissected the fly head, removing areas of 
tissue that protect the brain.  This painstakingly slow process has severely limited the process of 
decoding the circuitry of the fly brain in recent years. A high throughput imaging system must 
utilize a fast, accurate and automated microsurgery to overcome the limitations associated with 
manual dissection. 

We have demonstrated a laser ablation strategy for removing protective tissues 
surrounding the fly brain.  A human operator mounts a fly in an acrylic restraint and uses a 
commercially available laser microdissection device to ablate a 300x100 micron region above 
the fly brain.  We aim to automate this entire procedure, enabling imaging of tens or hundreds of 
flies in a single session. 
 
2.2 An Automated Laser Microsurgery 

To automate this microsurgery, we must ‘teach’ our laser microdissection device to 
intelligently locate the desired ablation region on each fly.  From a low magnification image of a 
mounted fly, the computer must first identify the position of the fly and navigate a motorized 
stage such that the fly is placed under a set of microscope objectives.  Next, the computer must 
analyze a 10X magnification image of the fly to locate the 300x100 micron region that we are 



interested in ablating.  Once this region is located, the computer uses a 20X magnification image 
to autofocus the camera and laser on the fly head. 
 
2.3 Computer Vision Implementation and Drawbacks 

We have implemented computer vision techniques to carry out this three-stage 
positioning process.  From the low magnification image, we are able to detect the approximate 
location of the fly head using geometric cues from the acrylic mount.  For more precise tracking 
of the fly head, we use color information to identify the fly’s eyes.  Specifically, we apply color 
intensity thresholding to choose eye seed points from a 10X magnification image, region grow 
over the seed points, and then dilate the region-grown image to remove false positives.  K-means 
clustering is used to identify the centroid location of each eye.  Finally, we apply edge-based 
autofocusing on a 20X image centered between the fly eyes. 

The low magnification detection and high magnification autofocus steps are 
computationally inexpensive, and they are robust against color and lighting variation since they 
operate only on grayscale intensity images.  The computer vision-based 10X eye detection 
algorithm is very computationally expensive, however, and thus not well-suited for real time 
application.  Further, the eye detection is highly dependent on color information, which must be 
hard-coded into the algorithm.  These major drawbacks motivated a machine learning-based 
approach to detecting eyes. 
 
3. Machine Learning Approach to Fly Eye Detection 
 
3.1 Task Definition 

We employed supervised learning techniques toward 
classifying image pixels as belonging to one of three 
classes: fly eye, fly skin or background.  Two independent 
methods were compared for classifying image pixels: Least-
squares (LS) and multi-class logistic regression (MCLR).  
Each classifier was trained using human-labeled images—
regions of eye, skin and background were processed into 
training examples. 

 
3.2 Algorithm Definition 

 Each pixel’s red/green/blue (RGB) and hue/ 
saturation/value (HSV) color intensities were used as 
training features for the LS and MCLR classifiers.  We 
implemented a one-versus-all classification scheme for 
MCLR. Prediction of a new image’s pixel labels are made 
by multiplying each pixel’s [1 R G B H S V]T vector by the 
weights vector computed by LS or MCLR, and thresholding 
the result accordingly.  Across an entire image, this 
prediction requires far fewer computations compared to the 
region growing method previously described.  After pixels 
are classified, k-means clustering is used to find the centroid 
location of detected fly eyes.  Example input and output 
images for LS and MCLR are shown in figure 1. 

Figure 1.  Example classification 
performance.  In-focus (A) and 400um 
defocused (B) images of a fly head under 
10X magnification are classified using LS 
(C and D, respectively) and MCLR (E and 
F, respectively).  Black points have been 
classified as eye, gray points as skin, and 
white as background.  K-means estimated 
fly eye locations are shown in red.  In both 
of these examples, LS fails to correctly 
locate the eyes, while MCLR succeeds in 
both examples. 



 
 
4. Experimental Evaluation 
 
4.1 Construction of Training Image Sets 

To evaluate the effect of image focus on training 
efficiency, we constructed three training image sets consisting 
of combinations of in-focus, 200um defocused, and 400um 
defocused images.  Each training image set consisted of 10X 
magnification images with rectangular regions hand-labeled 
as either eye, skin or background.  Only the pixels within 
these hand-labeled rectangular regions were used as training 
data.  An example training image is shown in figure 2.  We 
chose a small training set, 

€ 

Xtrain
S , to include four in-focus 

images, a medium training set, 

€ 

Xtrain
M , to include 

€ 

Xtrain
S  and 

three additional 200um defocused images, and a large training 
set, 

€ 

Xtrain
L , to include 

€ 

Xtrain
M  and three additional 400um 

defocused images.  Note that 

€ 

Xtrain
L  includes in-focus, 200um 

defocused, and 400um defocused images.  We trained each 
classifier, {LS, MCLR} on each of the training sets, 

€ 

Xtrain
S ,Xtrain

M ,Xtrain
L{ }, resulting in six weight vectors. 

 
4.2 Construction of Testing Image Sets 

We evaluated machine-labeling performance on three 
testing image sets consisting of untrained images with identical 
distribution to the training sets with respect to image focus.  We 
denote the test sets as

€ 

Xtest
S ,Xtest

M ,Xtest
L{ } , for the small, medium, 

and large training sets, respectively.  We applied each of the 
nine weight vectors from the training phase to each of the three 
testing image sets, resulting in eighteen machine labeled images. 

Machine labeled images were compared against hand-
labeled versions of the testing images.  Hand-labeled testing 
images differed from the hand-labeled training images, in that 
the testing-labels were applied to every pixel that could be 
unambiguously identified as eye, skin or background.  Some 
ambiguous pixels were left unlabeled, to prevent algorithm 
performance penalization in regions that do not clearly belong to 
one class or another.  An example hand-labeled testing image is 
shown in figure 3. 

 
4.3 Results 

We use a performance index (PI) as a metric for quantifying machine-labeling performance 
with respect to hand-labeled testing images.  We calculate PI according to equation 1. 

 

Figure 2. Example hand-labeled 
training image.  Pixels within the 
red, yellow and blue rectangles are 
designated as eye, skin, and 
background, respectively.  Pixels 
outside of these rectangles are not 
used for training. 

Figure 3. Example hand-labeled 
testing image.  Red, blue, and black 
regions correspond to eye, skin, 
and background labels, 
respectively.  Some points remain 
unlabeled due to the ambiguity of 
their true class labels.  These 
unlabeled points are not considered 
while assessing machine-labeling 
performance. 



 
 
 

We calculate a three PI’s for each machine-labeled image, corresponding to the three classes, 
eye, skin, and background.  The performance results, summarized in figure 4, show MCLR 
outperforming LS in all nine experiments.  For all classifiers, performance degraded 
monotonically as the testing set grew from 

€ 

Xtest
S  to 

€ 

Xtest
L .  Physically, this means that the 

classifiers had more trouble labeling pixels from out-of-focus images than pixels from in-focus 
images.  For practical purposes, we are most interested in each classifier’s performance on 

€ 

Xtest
L , 

since we would like our algorithm to work regardless of image focus.  On 

€ 

Xtest
L , the MCLR 

classifier performed optimally when trained on 

€ 

Xtrain
S .  Physically, this means that the in-focus 

images provided the best information for classifying pixels in variable focus images. 
Following machine-labeling, we apply k-means clustering to eye pixels to determine the 

centroid location of each eye.  In all experiments, k-means clustering on MCLR-labeled correctly 
detected the location of the fly eyes.  The LS classifier did not prove nearly as successful; on 

€ 

Xtest
L , k-means succeeded on 72%, 55%, and 45% of images when trained on 

€ 

Xtrain
S , 

€ 

Xtrain
M , and 

€ 

Xtrain
L , respectively. 

 
Figure 4.  Summary of performance results of the least-squares (LS) and multi-class logistic regression 
(MCLR) classifiers.   Plots across rows correspond to classifier performance when trained on the same image 
set, but evaluated with respect to different testing image sets.  Plots down columns correspond to classifier 
performance on the same testing image set, after training on different image sets.  

 
 

€ 

PI =
# correct labelings− # incorrect labelings( )

total # hand labeled pixels
Equation 1.  



5. Future Work 
 While we are not ready to present results, we are currently working on a multi-class 

support vector machine implementation (MCSVM) to solve our pixel classification problem.  
We are interested in using a quadratic kernel according to a 

€ 

ℜ6 →ℜ36 feature mapping. From 
our experimental results, we found MCLR to yield the best performance.  Depending on the 
success of our MCSVM progress, we will integrate either MCLR or MCSVM directly into the 
software that controls our laser microdissection device.   

We would like to allow for online training, to enable researchers to bring in fly lines that may 
have radically different appearances compared to the OK107 flies that our classifiers were 
trained on.  Other fly lines may have genetic modifications, such as white eyes—clearly the 
classifiers would need to be retrained at the beginning of a microsurgery session.  
 
6. Conclusion 

We have successfully demonstrated the use of supervised machine learning algorithms to 
classify regions in high-magnification images of the fly head. We characterized least-squares 
estimation to multi-class logistic regression classification for our fly tracking purposes.  We have 
shown that MCLR trained on in-focus images results in optimal classification performance on in-
focus and out-of-focus images.  Using k-means clustering of MCLR-labeled points, we achieved 
a 100% success rate in locating the position of fly eyes.  These results suggest that we will be 
able to perform high throughput microsurgeries to prepare live flies for two-photon brain 
imaging. 


