
CS229 Project Report: Cracking CAPTCHAs
Learning to Read Obscured and Distorted Text in Images

Ryan Fortune
rfortune@stanford.edu

Gary Luu
gluu@cs.stanford.edu

Peter McMahon
pmcmahon@stanford.edu

Abstract—In this report we discuss the application of ma-
chine learning techniques to the problem of reading text
in CAPTCHAs. We first present techniques for reading a
CAPTCHA that requires only single character classification and
trivial segmentation, and show that we are able to successfully
read such CAPTCHAs. We then show how we attempted to
read a more difficult CAPTCHA; one that required significant
effort to segment before individual character classification can
be attempted. We detail our noise removal, line removal, and
clustering-based segmentation techniques, and present our results
for this second type of CAPTCHA.

I. INTRODUCTION

CAPTCHAs are widely used on the internet as a security
measure to prevent bots from automatically spamming
registration forms. They essentially form a weak Turing Test
in order to ensure that the user filling out a form on a website
is human. By identifying weaknesses in current CAPTCHA
techniques, researchers can enable the development of
CAPTCHAs that are more resistent to attack by resourceful
spammers.

Moreover, there are similarities between the tasks of reading
CAPTCHAs and reading handwritten text, so the development
of more effective techniques for reading CAPTCHAs may
yield insights into how one can more effectively apply machine
learning techniques to the problem of handwriting recognition.

There are many different CAPTCHA implementations,
many of which are not proprietary. We used Eliot’s PHP
CAPTCHA generator [1] and BrainJar’s .NET CAPTCHA
generator [6], because of the availability of source code
allowing us to generate data sets for supervised learning.

This report is divided into two main sections: the first
concerning our attempt to read Eliot’s CAPTCHAs, and the
second concerning the more difficult task of reading BrainJar
CAPTCHAs.

II. ELIOT’S PHP CAPTCHA SYSTEM

Eliot’s PHP CAPTCHA (EPC) system [1] is a CAPTCHA
generating library freely available on the web under the GPL.
An example of a CAPTCHA generated with EPC is shown
in Figure 1.

Fig. 1. CAPTCHA produced by Eliot’s PHP CAPTCHA.

The important characteristics to note in this CAPTCHA
are the following. First, the individual characters are placed
in invisible equally-sized subdivisions of the image. Second,
the characters use regular computer typeface (with random
font color) without any transformations other than translation,
rotation and size scaling. Third, lines have been randomly
drawn across the image.

The EPC system thus produces CAPTCHA’s solved by
trivial segmentation techniques: to segment the image, we
simply copy predetermined sections of the image. Solving
EPC CAPTCHA’s is thus a character recognition problem.

A. Character Classification using Raw Pixels as Features

We first attempted to build a character classifier using
features represented by the raw data (image pixels).
Specifically, we defined an m-by-n matrix X , where m is
the number of training examples, n is the number of features
(n = wh where w and h are the width and height of each
training image in pixels, respectively; throughout this report
we assume w = h = 50), and Xij is the grayscale value1

of the jth pixel in the image of the ith training example.
The jth pixel is defined in a way that allows the 2D training
images to be represented using a 1D array of pixel features.
An m-dimensional vector Y is defined that stores the actual
class of each training example. Yi = j if the ith training
example is the jth character.

Our first attempt at using these features was a classification
algorithm based on Multinomial Logistic Regression. This
approach yielded unsatisfactory results – even when using
training sets where m � n we experienced significant
difficulties with obtaining convergence, both with gradient

1We use the opposite to the usual convention for representing grayscale
pixel values: we convert a grayscale pixel value (x, y)old to our format by
subtracting it from the maximum value: (x, y)new = 255 − (x, y)old. This
has the more natural interpretation of “0” meaning a pixel is “off”, and “255”
meaning it is “on”.

m Linear Kernel Accuracy RBF Kernel Accuracy
260 25.7% 56.54%
2600 98.8% 99.00%

TABLE I
IMPACT OF SVM KERNEL CHOICE ON ACCURACY. TRAINING SET SIZE

m, AND TEST SET SIZE OF 26000.

descent and Newton’s method.

B. SVM Classification

We used the libsvm [8] Support Vector Machine package
to perform multi-class classification on the raw pixel features.
We attempted to use the popular SPIDER package, which is
native to MATLAB, but found that it was unable2 to train
datasets as large as ours.

The libsvm library provides support for several kernels. We
determined the classification accuracy with libsvm using the
linear3 kernel, and the radial basis function4 (RBF) kernel.
The libsvm authors recommend that the RBF kernel be used
with kernel parameter γ, and penalty parameter5 C, chosen
by cross-validation. Our results are shown in Table I. The
linear kernel provides good results, and has the advantage
that when selected, the SVM will train far more quickly than
with the RBF kernel. The default cross-validation training
implementation in libsvm produces excellent results, but
requires considerable computing resources for large training
sets such as ours. The m = 2600 case took approximately 36
CPU-hours to train. libsvm tests 272 configurations of C and
γ values using a basic grid search to determine those that
are optimal. Retraining the SVM 272 times on such a large
dataset is very time consuming.

Our results were obtained by training on two different
set sizes, and in both cases testing against an independent
set with 26000 examples (1000 of each letter in the latin
alphabet). With the linear kernel we used the libsvm default
C = 1, and with the RBF kernel we used libsvm’s grid search
optimization of C and γ.

C. Features

Due to the significant computational resources required to
train the SVM with large datasets when using the raw pixels
as features, we investigated two possibilities for reducing the
dimension of the feature space. We obtained a reduced space
using principal component analysis (PCA), and we developed
a custom set of features based on statistical properties of the

2With n = 2500 features, the SPIDER SVM could train on at most m =
20 examples.

3K(xi,xj) = xT
i xj

4K(xi,xj) = exp(−γ ||xi − xj ||2)
5The parameter C is that in the SVM optimization problem:

minw,b,ξ
1
2
wT w + C

Pm
i=1 ξi.

New Dimension k Test Set Accuracy
100 3.1%
250 18.5%
1500 26.2%
2500a 56.5%

TABLE II
IMPACT OF NEW FEATURE SPACE DIMENSION ON ACCURACY AFTER
APPLYING PCA. TRAINING SET SIZE m = 260 ON SVM WITH RBF

KERNEL, AND TEST SET SIZE OF 2600. ORIGINAL FEATURE DIMENSION
n = 2500.

aThis line shows the accuracy when the feature space dimension is not
reduced.

image pixels.

To determine the efficacy of PCA for our problem,
generated three new training sets using PCA, by mapping
the original n-dimensional feature space onto a new k-
dimensional space, with k = 100, k = 250 and k = 1500
respectively. We trained the SVM with these new training
sets, and in each case computed its accuracy using a common
test set. Table II shows the results. Reducing the feature
set dimension using PCA clearly has a significant negative
impact on accuracy, so we did not continue to use PCA.

We calculated a smaller set of ”median” features that
would hopefully capture trends of a given character with
many fewer features. The key to this approach was reducing
a two dimensional image into one dimension. We computed
row sums and column sums separately, and found the median
pixel. This is the pixel where the sum of the values of pixels
to the left equals the sum of the values of pixels to the
right with the same approach for the vertical direction. We
also computed 25% and 75% points as well as a few linear
combinations of these three values. Once we had the median
point we also calculated radial features using the distance
from the median point as the axis so the sum of pixels
closer to the median point than the radial median equals the
sum of those further away. Altogether this created 18 features.

Because these features only represent trends of the data we
supplemented these with other features that merged together
pixels in the original image. We merged cells to reduce a
50x50 character into a 8x8 character. This left us with 82
features, much fewer than before. With two-class logistic
regression, we were able to distinguish between two character
classes with over 95% accuracy, however these features did
not perform well once we moved to multi-class classification.

D. End-to-End Results

We have shown that we are able to classify individual
characters with high accuracy (99+%) when the characters
do not have any lines through them. Since segmentation is
trivial in Eliot’s CAPTCHA system, we would expect to be
able to correctly read a 5-character CAPTCHA with no lines

“Median” Features Custom Features Raw Pixels Feature
Accuracy Accuracy Accuracy
11.9% 25.0% 56.5%

TABLE III
IMPACT OF CUSTOM FEATURES ON ACCURACY. TRAINING SET SIZE

m = 260 ON SVM WITH RBF KERNEL, AND TEST SET SIZE OF 26000.

Lines Character Accuracy CAPTCHA Accuracy
0 98.8% 94.2%
10 90.8% 62.0%

TABLE IV
ACCURACY OF CLASSIFICATION OF WHOLE CAPTCHAS. USED MODEL

GENERATED WITH AN SVM WITH RBF KERNEL, AND TRAINING SET SIZE
m = 2600. TEST CAPTCHAS HAD EITHER NO LINES OR TEN RANDOMLY

PLACED LINES. THE TEST SETS HAD 50 CAPTCHAS EACH, EACH 5
CHARACTERS LONG.

with probability greater than 0.995 ≈ 0.95. We conducted an
experiment to verify this by generating 50 CAPTCHAs with
no lines, segmenting them, classifying each character, and
then counting how many CAPTCHAs were correctly read
(we define a CAPTCHA being correctly read as one that has
all of its characters correctly classified).

We also sought to determine what the impact of having
random lines placed in the CAPTCHA is. We similarly
generated 50 CAPTCHAs with 10 randomly drawn lines
each, and attempted to read them. Our results for both
experiments are shown in Table IV. We obtained the
expected result for the unobscured text, but with lines in
the CAPTCHA, the character classification accuracy drops
by nearly 10%. This has a dramatic impact on the reading
accuracy for the whole CAPTCHA, since now the probability
of correctly classifying all 5 characters in a CAPTCHA is
estimated as 0.9085 ≈ 0.6172. Our observed result is in
agreement with this.

III. MODIFIED BRAIN JAR CAPTCHA

We obtained a CAPTCHA program from the Brain Jar
website that contained warped text with noise. In order to
make classifying this CAPTCHA more difficult, we modified
it to produce splines lying horizontally across the text. An
sample output is shown in Figure 2. reCAPTCHA [7], the
current reference standard CAPTCHA from the inventors of
the field, uses text that is similarly obscured.

A. Individual Character Recognition

The BrainJar CAPTCHA is capable of using any characters
in the text, but in this report we focus on recognition of the

Fig. 2. Example Modified Brain Jar CAPTCHA

Training set size m Test Set Accuracy
500 52.4%
1000 49.6%
2000 56.0%
5000 72.2%
7000 76.2%

TABLE V
IMPACT OF TRAINING SET SIZE ON SVM ACCURACY USING Linear

Kernel. TRAINING AND TEST SETS USED CHARACTERS WITH NO NOISE IN
THE BACKGROUND OR FOREGROUND. THE TEST SET HAD 5000

EXAMPLES.

digits 0-9, purely due to computational resource constraints.

The character classification problem in BrainJar’s
CAPTCHA appears at first glance to be very similar to
that in Eliot’s CAPTCHA. Instead of individual characters
being translated, rotated and scaled, they are warped. In
addition, the BrainJar CAPTCHA also has noise both in the
background and in the text (the foreground). As we discuss
shortly, these differences have a significant iimpact on the
individual character classification performance in the BrainJar
CAPTCHA.

We first attempted to classify individual characters
generated without any background or foreground noise. Table
V shows our achieved accuracy as we increase the size of the
training set. We used a linear kernel with the libsvm SVM.
With the RBF kernel, with optimization of the parameters C
and γ as before, we were able to obtain an accuracy of 32.1%
using a training set size of m = 200. Available computational
resources limited our ability to investigate the performance of
this kernel using larger training sets, and far superior results
were obtained using the linear kernel with training set sizes
that were not tractable for us when using the RBF kernel.
Hence our classification in this section is all based on an
SVM using a linear kernel.

In all cases we have used raw pixel values as features.
We tested our pixel statistics-based features, but these again
yielded sub-optimal accuracy results (22.8% accuracy versus
38.9% accuracy when using raw pixel features, in one
experiment that we conducted).

Table VI shows the how using training sets with noise
versus those without noise affect accuracy on test sets that
are noisy and not noisy. The objective of this analysis was to
determine whether we should train our SVM on noisy data
or on clean data. We also sought to determine the importance
of noise removal in CAPTCHAs that we want to read. In
this table, blank entries denote quantities we didn’t conduct
experiments to measure.

We found that it is best to train the SVM using clean
data. This gives us an optimal accuracy of 76.2% if the test
set is also clean. Our optimal accuracy on data with both

XXXXXXXXTraining
Test No Noise FG Noise Only BG and FG Noise

No Noise 76.2% 65.6% 63.0%
FG Noise Only 52.1% 49.9%
BG and FG Noise 40.8%

TABLE VI
IMPACT ON ACCURACY OF NOISE IN TRAINING AND TEST SETS. SVM

WITH LINEAR KERNEL. THE TRAINING SETS HAD m = 7000. THE TEST
SETS HAD 10000 EXAMPLES EACH.

Fig. 3. k-means with radius and pixel intensity. Non-black pixels are made
white.

background and foreground noise is 63.0%. It is interesting to
note that when training on clean data, the accuracy decreases
most significantly when foreground noise is included. The
addition of background noise in addition does not have a
large additional impact.

B. Noise Removal

Noise removal is important for line removal, segmentation
and for character classification. We have shown how
the presence of noise adversely affects our accuracy in
single character classification. The following section briefly
discusses the negative impact of noise on the efficacy of our
line removal techniques.

Looking at Figure 2, we can see that there is noise across
the image in both the background and in the characters
themselves. We tried two variations of features to use for k-
means clustering to remove the noise. First, we tried clustering
on the intensity of the pixel and a count of pixels within a short
2-pixel radius that had a similar intensity, producing Figure 3.

We next tried clustering using the pixel intensity as well
as the size of the “Fill” region of the pixel, which is defined
as the size in pixels of the largest contiguous area with
similar pixel intensity that the pixel lies in. Figure 4 shows a
sample result following the application of this method. This
noise-removal technique clearly yielded superior results.

C. Line Removal

We attempted two methods of line removal: one using
dynamic programming to optimize a path, and another using
a probabilistic optimization procedure.

Fig. 4. k-means with pixel and “Fill” score

Fig. 5. Line Removal without Clustering Beforehand.

Fig. 6. Line Removal with Clustering Beforehand.

1) Slope Penalty and Dynamic Programming: Based on
two observations, the fact that the splines typically spanned
the image horizontally and generally would not have any
sharp changes in slope, we devised a dynamic programming
algorithm to find and remove the spline in the text by iterating
across the columns of the image, and using the following
recurrence

Scorei,j := max
k
{Scorei−1,k + γk,j}

where the farther k and j are apart, the lower the value of
γk,j .

γk,j = ImageHeight− |j − k|

Figures 5 and 6 show the results of this algorithm,
respectively with and without clustering before applying the
algorithm.

2) Monte Carlo Line Removal: We used a probablistic
method to remove lines. For every pixel, we computed the sum
of its value and its immediate neighbors. We choose a starting
point in the center column, and then progress to the left and
right separately. Given a previous pixel we look at a column
three pixels to the left/right of the previous one and only
consider the five pixels vertically closest to the previous to
maintain a continuous relatively flat line. We create a discount
value equal to half of the previous pixel’s sum, and subtract
this from each of the five sums. We then randomly choose
among these five by using the differences as weights. If all
five differences are zero, we consider this the end of the line.
We repeat 100 times and use the pixels that lead to the highest
combined sum.

D. Recompletion

Once we know where the line is, we want to remove it from
our images. Originally we set the value of any pixels on the
line or immediately above and below to zero. Unfortunately
this cut most of the letters in half. We implemented a simple
method to reconnect these characters by looking at the pixels
immediately above and below. Since clustering removes most
of the noise, we added the pixels back to the image if both
the above and below pixels have non-zero values. As to be
expected, this restores vertical lines well, partially fixes curves,
and does poorly replacing horizontal lines in characters.

Fig. 7. Successful Segmentation (LTFXQL)

Fig. 8. Unsuccessful Segmentation (PACQDB)

E. Segmentation

The CAPTCHA we were testing did not have merged
characters, so there was some white space between any two
characters in the original image before noise was added. We
assumed that this gap was at least two pixels. However, the
image we analyze has had both foreground and background
noise added so this assumption likely doesn’t hold. k-means
clustering allows us to remove much but not all of the
background noise, but it also takes a few pixels out of the
main characters.

For segmentation purposes we considered a pixel to be
part of a character if two of four pixels in its immediate area
have non-zero values. We then form groups of the non-zero
characters pixels if there are other character pixels sufficiently
close. We then take in to account where the line was removed
and merge groups across the line. This leaves us with around
50 pixel groups for 6 character CAPTCHAS.

In order to merge more groups together, we look at the
rightmost and leftmost ends of each character group. Since
English characters tend to be vertically oriented, if any of
the smaller groups ranges are relatively close to the range
of one of the largest, but not close to any of the others,
we merge them together. Ideally this prevents merging two
separate characters together. After this, we take the six largest
groups and consider them to be the six characters. We sort
the groups based on their leftmost pixel to restore the ordering.

F. End-to-End Results

We performed an end-to-end test of our CAPTCHA
cracking system on 100 CAPTCHAs generated using the
modified BrainJar generator, each six characters long, using
only the digits 0-9. Our experiment attempted to read each
CAPTCHA by removing noise, removing the line (with
recompletion), segmenting the image, and then performing
individual character recognition on each character.

Table VII shows the results. We present a count of the
number of test CAPTCHAs in which 0, 1, . . . , 6 characters

Chars Correct 0 1 2 3 4 5 6
Counts 41 26 19 8 5 1 0

TABLE VII
CLASSIFICATION OF WHOLE CAPTCHAS: COUNTS OF CORRECT

INDIVIDUAL CHARACTER CLASSIFICATION PER CAPTCHA. USED
MODEL GENERATED WITH AN SVM WITH LINEAR KERNEL, AND

TRAINING SET SIZE m = 10000. THE TEST SET HAD 100 CAPTCHAS,
WITH 6 CHARACTERS (DIGITS 0-9) IN EACH.

were correctly identified. Not a single whole 6-digit
CAPTCHA was correctly read. However, one CAPTCHA
had five of its six digits correctly classified. In 41 cases, not
a single character was correctly identified. Out of 600 digits
in total, 113 were ultimately correctly classified.

The errors result from a combination of effects from three
imperfect procedures. First, segmentation may fail. Second,
recompletion after line removal may fail, which would result
in a portion of a character being deleted. In some cases this is
unimportant, but in others a significant horizontal portion of a
character may be permanently removed. The fifth character in
Figure 8 demonstrates this – a “D” was transformed into a “U”.
Third, the individual character classification is imperfect, and
even more so in the presence of noise that is not completely
removed.

IV. CONCLUSIONS

We have demonstrated that SVMs can be used to classify
distorted individual characters with a success rate of 99%.
This leads to the ability to read unobscured CAPTCHAs
amenable to trivial segmentation with a success rate of
approximately 95%. We have also presented methods for
attacking the problem of segmentation in the most difficult
type of CAPTCHA currently used.

A. Comparison with Related Work

In [3], Chellapilla et. al. present results for individual
character recognition in CAPTCHAs using neural networks.
They are able to achieve an accuracy of 99+%, even on
warped text; this is considered the current optimal solution
[4]. In an earlier paper, [2], Chellapilla et. al. were able to
crack some CAPTCHAs featuring non-trivial segmentation
characteristics with accuracy of approximately 4%. Yan and
Al Ahmad [4] recently reported on their cracking of the
Microsoft CAPTCHA. However, to our knowledge there has
been no successful breaking of CAPTCHAs using warped
text with splines, such as our modified BrainJar CAPTCHA,
and reCAPTCHA [7].

Proper segmentation is a crucial step for any character
recognition effort and as such there is much prior work that
has already been done. Unfortunately for us, most of these
address situations without foreground noise, meaning each
character is contiguous, a situation we do not have. Some of
the gaps and holes within our characters could be removed

by blurring the image, but doing so would make individual
character recognition more difficult by obscuring character
features. Khan’s thesis [5] on segmentation suggests using
a drop-fall algorithm for general purposes and also suggests
ways of identifying disconnected characters. The drop fall
algorithm described essentially reverses our approach and
uses the whitespace instead of the character pixels themselves
for segmentation, but this approach would similarly suffer
with foreground noise. Khan’s method handles disconnected
characters in way that relies on the disconnect occurring in
specific situations, which is not applicable in CAPTCHAs.
Highly accurate segmentation remains an open problem for
modern CAPTCHAs.

B. Future Work

One technique for reading CAPTCHAs, inspired by the way
humans read CAPTCHAs, is to use a feedback mechanism
between the segmentation and character classification stages.
In the cases where the segmentation has been done incorrectly,
the certainty of a prediction made by the SVM will be low.
In this event, the segmenter should be required to reattempt
segmenting that region of the image. One simple possible
implementation of this idea is to slide a fixed-size window
over the data and only accept a segmentation involving the
current window position if the image in that window yields a
character prediction with high certainty.

REFERENCES

[1] E. Eliot. PHP CAPTCHA. URL: http://www.ejeliot.com/pages/php-
captcha

[2] Kumar Chellapilla, Patrice Y. Simard. Using Machine Learning to Break
Visual Human Interaction Proofs (HIPs). NIPS 2004.

[3] Kumar Chellapilla, Kevin Larson, Patrice Simard and Mary Czerwinski.
Computers beat humans at single character recognition in reading based
human interaction proofs. Second Conference on E-mail and Anti-Spam
(CEAS) 2005.

[4] Jeff Yan and Ahmad Salah El Ahmad. A Low-cost Attack on a Microsoft
CAPTCHA., ACM Conference on Computer and Communications
Security, 2008.

[5] Salman Amin Khan. Character Segmentation Heuristics for Check
Amount Verification. Ph.D. Thesis, MIT, 1998.

[6] Mike Hall. CAPTCHA Image URL:
http://www.brainjar.com/dotNet/CaptchaImage/

[7] reCAPTCHA URL: http://recaptcha.net/

[8] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support
vector machines. URL: http://www.csie.ntu.edu.tw/˜cjlin/libsvm

[9] SPIDER SVM library for MATLAB. URL:
http://www.kyb.mpg.de/bs/people/spider/

